Abstract
Sequential model-based optimization is a popular technique for global optimization of expensive black-box functions. It uses a regression model to approximate the objective function and iteratively proposes new interesting points. Deviating from the original formulation, it is often indispensable to apply parallelization to speed up the computation. This is usually achieved by evaluating as many points per iteration as there are workers available. However, if runtimes of the objective function are heterogeneous, resources might be wasted by idle workers. Our new knapsack-based scheduling approach aims at increasing the effectiveness of parallel optimization by efficient resource utilization. Derived from an extra regression model we use runtime predictions of point evaluations to efficiently map evaluations to workers and reduce idling. We compare our approach to five established parallelization strategies on a set of continuous functions with heterogeneous runtimes. Our benchmark covers comparisons of synchronous and asynchronous model-based approaches and investigates the scalability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Hutter, F., Ramage, S.: Manual for SMAC version v2.10.03-master. Department of Computer Science, UBC. (2015), www.cs.ubc.ca/labs/beta/Projects/SMAC/ v2.10.03/manual.pdf.
References
Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.: Model-based genetic algorithms for algorithm configuration. In: International Joint Conference on Artificial Intelligence, pp. 733–739 (2015)
Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., Casalicchio, G., Jones, Z.M.: mlr: Machine learning in R. J. Mach. Learn. Res. 17(170), 1–5 (2016)
Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., Lang, M.: mlrMBO: A modular framework for model-based optimization of expensive black-box functions. arXiv pre-print (2017). http://arxiv.org/abs/1703.03373
Bischl, B., Wessing, S., Bauer, N., Friedrichs, K., Weihs, C.: MOI-MBO: multiobjective infill for parallel model-based optimization. In: Pardalos, P.M., Resende, M.G.C., Vogiatzis, C., Walteros, J.L. (eds.) LION 2014. LNCS, vol. 8426, pp. 173–186. Springer, Cham (2014). doi:10.1007/978-3-319-09584-4_17
Borchers, H.: adagio: Discrete and Global Optimization Routines (2016). R package version 0.6.5. https://CRAN.R-project.org/package=adagio
Bossek, J.: smoof: Single and Multi-Objective Optimization Test Functions (2016). R package version 1.4. https://CRAN.R-project.org/package=smoof
Chevalier, C., Ginsbourger, D.: Fast computation of the multi-points expected improvement with applications in batch selection. In: Nicosia, G., Pardalos, P. (eds.) LION 2013. LNCS, vol. 7997, pp. 59–69. Springer, Heidelberg (2013). doi:10.1007/978-3-642-44973-4_7
Ginsbourger, D., Janusevskis, J., Le Riche, R.: Dealing with asynchronicity in parallel Gaussian process based global optimization. In: 4th International Conference of the ERCIM WG on Computing & Statistics (ERCIM 2011), pp. 1–27 (2011)
Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize optimization. In: Tenne, Y., Goh, C.K. (eds.) Computational Intelligence in Expensive Optimization Problems, pp. 131–162. Springer, Heidelberg (2010). doi:10.1007/978-3-642-10701-6_6
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3_40
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Parallel algorithm configuration. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 55–70. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34413-8_5
Janusevskis, J., Le Riche, R., Ginsbourger, D.: Parallel expected improvements for global optimization: summary, bounds and speed-up. Technical report (2011). https://hal.archives-ouvertes.fr/hal-00613971
Janusevskis, J., Le Riche, R., Ginsbourger, D., Girdziusas, R.: Expected improvements for the asynchronous parallel global optimization of expensive functions: potentials and challenges. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 413–418. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34413-8_37
Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Global Optim. 21(4), 345–383 (2001)
Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)
Kotthaus, H., Korb, I., Lang, M., Bischl, B., Rahnenführer, J., Marwedel, P.: Runtime and memory consumption analyses for machine learning R programs. J. Stat. Comput. Simul. 85(1), 14–29 (2015)
Kotthaus, H., Korb, I., Marwedel, P.: Performance analysis for parallel R programs: towards efficient resource utilization. Technical report 01/2015, Department of Computer Science 12, TU Dortmund University (2015)
Lang, M., Bischl, B., Surmann, D.: batchtools: Tools for R to work on batch systems. J. Open Source Softw. 2(10) (2017)
Richter, J., Kotthaus, H., Bischl, B., Marwedel, P., Rahnenführer, J., Lang, M.: Faster model-based optimization through resource-aware scheduling strategies. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 267–273. Springer, Cham (2016). doi:10.1007/978-3-319-50349-3_22
Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: two R packages for the analysis of computer experiments by Kriging-based metamodeling and optimization. J. Stat. Softw. 51(1), 1–55 (2012)
Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, vol. 25. pp. 2951–2959. Curran Associates, Inc. (2012)
Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints. Kluwer Academic Publishers, Dordrecht (2000)
Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer, New York (2008). doi:10.1007/978-0-387-74740-8
Acknowledgments
J. Richter and H. Kotthaus — These authors contributed equally. This work was partly supported by Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center SFB 876, A3 and by Competence Network for Technical, Scientific High Performance Computing in Bavaria (KONWIHR) in the project “Implementierung und Evaluation eines Verfahrens zur automatischen, massiv-parallelen Modellselektion im Maschinellen Lernen”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kotthaus, H. et al. (2017). RAMBO: Resource-Aware Model-Based Optimization with Scheduling for Heterogeneous Runtimes and a Comparison with Asynchronous Model-Based Optimization. In: Battiti, R., Kvasov, D., Sergeyev, Y. (eds) Learning and Intelligent Optimization. LION 2017. Lecture Notes in Computer Science(), vol 10556. Springer, Cham. https://doi.org/10.1007/978-3-319-69404-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-69404-7_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69403-0
Online ISBN: 978-3-319-69404-7
eBook Packages: Computer ScienceComputer Science (R0)