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Abstract. We study asymptotic properties of optimal statistical esti-
mators in global random search algorithms when the dimension of the
feasible domain is large. The results obtained can be helpful in deciding
what sample size is required for achieving a given accuracy of estimation.
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1 Introduction

We consider the problem of global minimization f(x)— min,ex , where f(-) is
the objective function and X C R? is a feasible domain. The set X is a compact
set with non-empty interior and the objective function f(-) is assumed to satisfy
some smoothness conditions which will be discussed below. Let f. = mingex f(x)
be the minimal value of f(-) and z, be a global minimizer; that is, . is any
point in X such that f(z.) = f..

If the objective function is given as a ‘black box’ computer code and there
is no information about this function available of Lipschitz type, then good
stochastic approaches often perform better than deterministic algorithms, espe-
cially in large dimensions; see for example [4,3]. Moreover, stochastic algorithms
are usually simpler than deterministic algorithms.

A general Global Random Search (GRS) algorithm constructs a sequence of
random points x1, g, ... such that the point z; has some probability distribution
P;, j =1,2,...; we write this as x; ~ P;. For each j > 2, the distribution P;
may depend on the previous points z1,...,z;—1 and on f(z1),..., f(z,;-1).

In the present paper, we will mostly concentrate on the so-called Pure Ran-
dom Search (PRS) algorithm, where the points x1, z9, ... are independent and
have the same distribution P = P; for all j. Simplicity of PRS enables detailed
examination of this algorithm.

2 Statistical inference about f, in pure random search

Consider a PRS with x; ~ P. Statistical inference about f, can serve for the
following purposes: (i) devising specific GRS algorithms like the branch and
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probability bounds methods, see [2,6] and [4, Sect. 4.3], (ii) constructing stopping
rules, see [5], and (iii) increasing efficiency of population-based GRS methods,
see discussion in [3, Sect. 2.6.1]. Moreover, the use of statistical inferences in GRS
algorithms can be very helpful in solving multi-objective optimization problems
with non-convex objectives, see [6].

Since the points z; in PRS are independent identically distributed (i.i.d.)
with distribution P, the elements of the sample Y = {yi,...,y,} with y; =
f(z;) are iid. with cumulative distribution function (c.d.f.) F(t) = Pr{z €
X: f(z) <t} = ff(z)gt P(dz) = P(W(t — f)), where t > f, and W(J) =
{z € X: f(x) < fi+ 6}, = 0. Since the analytic form of F(t) is either unknown
or intractable (unless f is very simple), for making statistical inferences about f,
we need to use the asymptotic approach based the record values of the sample
Y. It is known that (i) the asymptotic distribution of the order statistics is
unambiguous, (ii) the conditions on F(t) and f(-) when this asymptotic law
works are very mild and typically hold in real-life problems, (iii) for a broad
class of functions f(-) and distributions P, the c.d.f. F(t) has the representation

F(t) = co(t = f)* +o((t = f2)%), t L [, (1)

where ¢y and « are some positive constants. The value of ¢y is not important but
the value of « is essential. The coefficient « is called ‘tail index’ and its value is
usually known, as discussed below.

Let n be a random variable which has c.d.f. F(t) and y1,, < ... < ypnn be
the order statistics for the sample Y. By construction, f, is the lower endpoint
of the random variable 7.

One of the most important result in the theory of extreme order statistics
states (see e.g. [3, Sect. 2.3]) that if (1) holds then the c.d.f. F(¢) belongs
to the domain of attraction of the Weibull distribution with density 9, (t) =
at®ltexp{—t*}, t > 0. This distribution has only one parameter, the tail
index a.

In PRS we can usually have enough knowledge about f(-) to get the exact
value of the tail index «. Particularly, the following statement holds: if the global
minimizer z, of f(-) is unique and f(-) is locally quadratic around z, then the
representation (1) holds with o = d/2. However, if the global minimizer z, of
f(+) is unique and f(-) is not locally quadratic around z, then the representation
(1) may hold with o = d. See [4] for a comprehensive description of the related
theory.

The result that « has the same order as d when d is large implies the phe-
nomena called ‘the curse of dimensionality’. Let us first illustrate this curse of
dimensionality on a simple numerical example.

3 Numerical examples

We investigate the minimization problem with the objective function f(z) =
efx, where e = (1,0,...,0)T, and the set X is the unit ball: X = {z €
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R? : ||z|| < 1}. The minimal value is f, = —1 and the global minimizer
z. = (=1,0,...,0)T is located at the boundary of X. Consider the PRS al-
gorithm with points x; generated from the uniform distribution Py on X.

Let us give some numerical values. In a simulation with n = 10% and d =
20, we have received y;, = —0.6435, y2, = —0.6107, y3, = —0.6048 and
Ysn = —0.6021. In a simulation with n = 10° and d = 20, we have obtained
Yin = —0.7437, Yo , = —0.7389, y3,, = —0.7323 and y4, = —0.726. In Figure
1 we depict the differences yi,, — fi for k = 1,4,10 and n = 103,...,1013,
where the horizontal axis has logarithmic scale. We can see that the difference
Yk,n — Y1,n is much smaller than the difference y; ,, — f.; that demonstrates that
the problem of estimating the minimal value of f, is very hard.
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Fig. 1. Differences y1,, — f« (solid), ya,n — f« (dashed) and y10,n — f« (dotted), where
Ykm, k = 1,4,10, are records of evaluations of the function f(z) = efx at points

Z1,...,%n with uniform distribution in the unit hyperball in the dimension d = 20
(left) and d = 50 (right).

Fig. 2. The difference y1,n — f« (left) and yi0,n — y1,n» (right) for n = 108 (solid)
and n = 10'° (dashed), where y;, is the j-th record of evaluations of the function
flz) = el x at points x1, ..., z, with uniform distribution in the unit hyperball in the
dimension d; d varies in [5, 250].

In Figure 2 we observe that the difference y; , — fs« increases as the dimension
d grows, for fixed n. Thus, the minimization problem becomes more difficult in
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larger dimensions. Also, Figure 2 shows that difference y10,, — y1,, is much
smaller than the difference y1 , — fs.

Consider now the optimal linear estimator based on the use of k£ order statis-
tics; this estimator, as shown in [1,4], has the form

k
o 1 s
n,k = ; i,n s 2
Fuk ckﬁxgé;Ar(z+-2/a)y’ @)
where I'(+) is the Gamma-function,
a+1, i=1,
u; =< (a—1)I(%), i=2,...,k—1,

(a—ak—-1I(k), i=k,

o :{Zigﬁ, a=2,
koor L (al(k+1)/T(k+2/a) —2/T(1+2/a)), a#2.

a—2
If the representation (1) holds, then for given k and a and as n — oo, the
estimator fnk is a consistent and asymptotically unbiased estimator of f, and
its asymptotic mean squared error E( fmk — f+)? has maximum possible rate
of convergence in the class of all consistent estimators including the maximum
likelihood estimator of f., as shown in [4, Ch 7]. This mean squared error has
the following asymptotic form:

E(fux — f+)? = Cralcon) ™ (140(1)), n— occ. (3)

Using the Taylor series I'(k + 2/a) = I'(k) + 2I"(k) + O(1/a?) for large
values of «, we obtain

G L4 =410 W

for large «, where ¢(-) = I''(-)/I'(+) is the psi-function. Quality of this approxi-
mation is illustrated on Figures 3 and 4.
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Fig. 3. The exact expression of C,o (solid) and the approximation (4) (dashed) for
k =2 (left) and k = 10 (right); « varies in [5, 50].
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Fig. 4. The exact expression of Cy,o (solid) and the approximation (4) (dashed) for
a =4 (left) and a = 7 (right); as k varies in [2, 25].

In practice of global optimization, the standard estimator of f, is the current
record Y1, = min;—1, ., f(x;). Its asymptotic mean squared error is

E(far(er) = fo)? = (1 +2/a)(con)™>/* (1 +0(1)), n— oo,

Asymptotic efficiency of y; ,, is therefore eff(y1.,) = Cro/I'(1 + 2/a). This
efficiency is illustrated on Fig. 5.
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Fig. 5. Asymptotic efficiency eff (y1,») of y1,». Left: kK = 2 (solid) and k = 10 (dashed);
as « varies in [5,40]. Right: a = 5 (solid) and a = 25 (dashed); as k varies in [2, 20].

GRS algorithms have a very attractive feature in comparison with determin-
istic optimisation procedures. Specifically, in GRS algorithms we can use statis-
tical procedures for increasing efficiency of the algorithms and devising stopping
rules. But do we lose much by choosing the points at random? We claim that if
the dimension d is large then the use of quasi-random points instead of purely
random does not bring any advantage. Let us try to illustrate this using some
simulation experiments.

Using simulation studies we now investigate the performance of the PRS
algorithm with P = Py and quasi-random points generated from the Sobol low-
dispersion sequence. We examine the minimization problem with the objective
function f(x) = Zgzl(xs — | cos(s)|)? and the set X = [0,1]? in the dimension
d = 15. In this problem, the global minimum f, = 0 is attained at the internal
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point x, = (|cos(1)|,...,|cos(d)|). For each run of the PRS algorithm, we gen-
erate n points and compute the records y; ,, and ya ,, for n = 103,10%,10°, 10°.
We repeat this procedure 500 times and show the obtained records as boxplots
in Figure 6.
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Fig. 6. Boxplot of records y1,, for 500 runs of the PRS algorithm with points generated
from the Sobol low-dispersion sequence (left) and the uniform distribution (right),
d = 15.

We can see that the performance of the PRS algorithm with points gener-
ated from the Sobol low-dispersion sequence and the uniform distribution is very
similar. We also note that the variability of y, ,, is larger than variability of ya4
and the difference y19,, — ya,» has a small variability.
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