Abstract
The ability to solve spatial tasks is crucial for everyday life and therefore of great importance for cognitive agents. In artificial intelligence (AI) we model this ability by representing spatial configurations and spatial tasks in the form of knowledge about space and time. Augmented by appropriate algorithms, such representations enable the generation of knowledge-based solutions to spatial problems. In comparison, natural embodied and situated cognitive agents often solve spatial tasks without detailed knowledge about underlying geometric and mechanical laws and relationships. They directly relate actions and their effects through physical affordances inherent in their bodies and their environments. Examples are found in everyday reasoning and also in descriptive geometry. In an ongoing research effort we investigate how spatial and temporal structures in the body and the environment can support or even replace reasoning effort in computational processes. We call the direct use of spatial structure Strong Spatial Cognition. Our contribution describes cognitive principles of an extended paradigm of cognitive processing. The work aims (i) to understand the effectiveness and efficiency of natural problem solving approaches; (ii) to overcome the need for detailed representations required in the knowledge-based approach; and (iii) to build computational cognitive systems that make use of these principles.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Barkowsky, T., Berendt, B., Egner, S., Freksa, C., Krink, T., Röhrig, R., Wulf, A.: The Realator: how to construct reality. In: Rodríguez, R.V. (ed.) ECAI 1994 Workshop W12 Spatial and Temporal Reasoning, Amsterdam (1994)
Bateman, J.A., Hois, J., Ross, R., Tenbrink, T.: A linguistic ontology of space for natural language processing. Artif. Intell. 174, 1027–1071 (2010)
Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge (1984)
Brooks, R.A.: Intelligence without representation. Artif. Intell. 47, 139–159 (1991)
Chandrasekaran, B.: Multimodal cognitive architecture: making perception more central to intelligent behavior. In: Proceedings of AAAI, pp. 1508–1512 (2006)
Cohn, A.G., Renz, J.: Qualitative spatial representation and reasoning. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 551–596. Elsevier, Amsterdam (2008)
Davis, E., Marcus, G.: Commonsense reasoning and commonsense knowledge in artificial intelligence. CACM 58(9), 92–103 (2015)
Modha, D.S., Ananthanarayanan, R., Esser, S.K., Ndirango, A., Sherbondy, A.J., Singh, R.: Cognitive computing. Commun. ACM 54(8), 62–71 (2011)
Dreyfus, H., Haugeland, J.: The computer as a mistaken model of the mind. In: Brown, S.C. (ed.) Philosophy of Psychology, pp. 247–258. Palgrave Macmillan, London (1974)
Dylla, F., Lee, J.H., Mossakowski, T., Schneider, T., van Delden, A., van de Ven, J., Wolter, D.: A survey of qualitative spatial and temporal calculi: algebraic and computational properties. ACM Comput. Surv. (CSUR) 50(1), 7:1–7:39 (2017)
Egenhofer, M.J., Franzosa, R.D.: Point-set topological spatial relations. Int. J. Geogr. Inf. Syst. 5(2), 161–174 (1991)
Egenhofer, M.J., Mark, D.M.: Modeling conceptual neighborhoods of topological line-region relations. Int. J. Geogr. Inf. Syst. 9(5), 555–565 (1995)
Freksa, C.: Conceptual neighborhood and its role in temporal and spatial reasoning. In: Singh, M., Travé-Massuyès, L. (eds.) Decision Support Systems and Qualitative Reasoning, pp. 181–187. North-Holland, Amsterdam (1991a)
Freksa, C.: Qualitative spatial reasoning. In: Mark, D.M., Frank, A.U. (eds.) Cognitive and Linguistic Aspects of Geographic Space, pp. 361–372. Kluwer, Dordrecht (1991b)
Freksa, C.: Spatial computing – how spatial structures replace computational effort. In: Raubal, M., Mark, D., Frank, A. (eds.) Cognitive and Linguistic Aspects of Geographic Space, pp. 23–42. Springer, Heidelberg (2013). doi:10.1007/978-3-642-34359-9_2
Freksa, C.: Computational problem solving in spatial substrates – a cognitive systems engineering approach. Int. J. Softw. Inf. 9(2), 279–288 (2015a)
Freksa, C.: Strong spatial cognition. In: Fabrikant, S.I., Raubal, M., Bertolotto, M., Davies, C., Freundschuh, S., Bell, S. (eds.) COSIT 2015. LNCS, vol. 9368, pp. 65–86. Springer, Cham (2015b). doi:10.1007/978-3-319-23374-1_4
Freksa, C., Barkowsky, T., Dylla, F., Falomir, Z., Olteteanu, A.-M., van de Ven, J.: Spatial problem solving and cognition. In: Zacks, J., Taylor, H. (eds.) Representations in Mind and World. Routledge, New York (2018)
Freksa, C., Olteteanu, A.-M., Ali, A.L., Barkowsky, T., van de Ven, J., Dylla, F., Falomir, Z.: Towards spatial reasoning with strings and pins. In: Advances in Cognitive Systems 4, Poster Collection #22, pp. 1–15 (2016). http://www.cogsys.org/papers/ACS2016/Posters/Freksa_et.al-ACS-2016.pdf
Freksa, C., Schultheis, H.: Three ways of using space. In: Montello, D.R., Grossner, K.E., Janelle, D.G. (eds.) Space in Mind: Concepts for Spatial Education, pp. 31–48. MIT Press, Cambridge (2014)
Frese, U., Larsson, P., Duckett, T.: A multigrid relaxation algorithm for simultaneous localization and mapping. IEEE Trans. Robot. 21(2), 196–207 (2005)
Funt, B.: Problem-solving with diagrammatic representations. Artif. Intell. 13(3), 201–230 (1980)
Furbach, U., Furbach, F., Freksa, C.: Relating strong spatial cognition to symbolic problem solving – an example. In: Proceedings of 2nd Workshop on Bridging the Gap Between Human and Automated Reasoning, IJCAI, New York (2016). arXiv:1606.04397v1 [cs.AI]
Gibson, J.J.: The Ecological Approach to Visual Perception. Lawrence Erlbaum, New Jersey (1979)
Glasgow, J., Narayanan, N.H., Chandrasekaran, B. (eds.): Diagrammatic Reasoning: Cognitive and Computational Perspectives. AAAI Press, Menlo Park (1995)
Goel, A.K., Jamnik, M., Narayanan, N.H.: Diagrammatic Representation and Inference. Springer, Berlin (2010). doi:10.1007/978-3-642-14600-8
Goel, A.K., Vattam, S., Wiltgen, B., Helms, M.: Cognitive, collaborative, conceptual and creative – four characteristices of the next generation of knowledge-based CAD systems: a study in biologically inspired design. Comput. Aided Des. 44(10), 879–900 (2012)
Gooday, J.M., Cohn, A.G.: Conceptual neighbourhood in temporal and spatial reasoning. In: ECAI 1994, Amsterdam (1994)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
Kelly III, J.: Computing, cognition and the future of knowing. IBM Research: Cognitive Computing. IBM Corporation (2015)
Kirsh, D.: Embodied cognition and the magical future of interaction design. ACM Trans. Comput.-Hum. Interact. 20(1), 3:1–3:30 (2013)
Lakoff, G., Johnson, M.: Metaphors we Live by. University of Chicago Press, Chicago (1980)
Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand words. Cogn. Sci. 11, 65–99 (1987)
Mansouri, M., Pecora, F.: A representation for spatial reasoning in robotic planning. In: International Conference on Intelligent Robots and Systems (IROS) - Workshop on AI-Based Robotics (2013)
Marr, D.: Vision. MIT Press, Cambridge (1982)
McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial intelligence. Mach. Intell. 4, 463–502 (1969)
Norman, D.A.: The Design of Everyday Things. Basic Books, New York (2013)
Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)
Polya, G.: How to Solve it. Princeton University Press, Princeton (1956)
Raubal, M., Moratz, R.: A functional model for affordance-based agents. In: Rome, E., Hertzberg, J., Dorffner, G. (eds.) Towards Affordance-Based Robot Control. LNCS, vol. 4760, pp. 91–105. Springer, Heidelberg (2008). doi:10.1007/978-3-540-77915-5_7
Rome, E., Hertzberg, J., Dorffner, G. (eds.): Towards Affordance-Based Robot Control. LNAI, vol. 4760. Springer, Berlin (2008). doi:10.1007/978-3-540-77915-5
Sloman, A.: Interactions between philosophy and artificial intelligence: the role of intuition and non-logical reasoning in intelligence. Artif. Intell. 2, 209–225 (1971)
Sloman, A.: Afterthoughts on analogical representation. In: Schank, R., Nash-Webber, B. (eds.) Theoretical Issues in Natural Language Processing (TINLAP-1), pp. 431–439 (1975)
Sloman, A.: Why we need many knowledge representation formalisms. In: Bramer, M. (ed.) Research and Development in Expert Systems, pp. 163–183. Cambridge University Press, New York (1985)
Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)
Vitruvius, M.V.: De Architectura. Book IX, pp. 9–12, text in English, University of Chicago (2017). Accessed 21 Mar 2007
Wintermute, S., Laird, J.E.: Bimodal spatial reasoning with continuous motion. In: Proceedings of AAAI, pp. 1331–1337 (2008)
Wörgötter, F., Geib, C., Tamosiunaite, M., Aksoy, E.E., Piater, J., Xiong, H., Ude, A., Nemec, B., Kraft, D., Krüger, N., Wächter, M., Asfour, T.: Structural bootstrapping – a novel, generative mechanism for faster and more efficient acquisition of action-knowledge. IEEE Trans. Auton. Mental Dev. 7(2), 140–154 (2015)
Wolter, D., Wallgrün, J.O.: Qualitative spatial reasoning for applications: new challenges and the SparQ toolbox. In: Hazarika, S.M. (ed.) Qualitative Spatio-Temporal Representation and Reasoning, pp. 336–362. IGI Global (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Freksa, C., Olteţeanu, AM., Barkowsky, T., van de Ven, J., Schultheis, H. (2017). Spatial Problem Solving in Spatial Structures. In: Phon-Amnuaisuk, S., Ang, SP., Lee, SY. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2017. Lecture Notes in Computer Science(), vol 10607. Springer, Cham. https://doi.org/10.1007/978-3-319-69456-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-69456-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69455-9
Online ISBN: 978-3-319-69456-6
eBook Packages: Computer ScienceComputer Science (R0)