Skip to main content

Solving the Manufacturing Cell Design Problem Using the Artificial Bee Colony Algorithm

  • Conference paper
  • First Online:
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2017)

Abstract

The manufacturing cell design problem (MCDP) proposes to divide an industrial production plant into a number of manufacturing cells. The main objective is to identify an organization of machines and parts in a set of manufacturing cells to allow the transport of parts to be minimized. In this research, the metaheuristic algorithm called Artificial Bee Colony (ABC) is implemented to solve the MCDP. The ABC algorithm is inspired by the ability of bees to get food, the way they look for it and exploit it. We performed two types of experiments using two and three cells, giving a total of 90 problems that have been used to solve the MCDP using ABC. In the results experiments, good results are obtained solving the 90 proposed problems and reaching the 90 global optimum values. Finally, the results are contrasted with two classical metaheuristics and two modern metaheuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adil, G.K., Rajamani, D., Strong, D.: A mathematical model for cell formation considering investment and operational costs. Eur. J. Oper. Res. 69(3), 330–341 (1993)

    Article  MATH  Google Scholar 

  2. Aljaber, N., Baek, W., Chen, C.L.: A tabu search approach to the cell formation problem. Comput. Ind. Eng. 32(1), 169–185 (1997)

    Article  Google Scholar 

  3. Almonacid, B.: Dataset - Solving the Manufacturing Cell Design Problem using the Artificial Bee Colony, August 2017. https://figshare.com/articles/Dataset_-_Solving_the_Manufacturing_Cell_Design_Problem_using_the_Artificial_Bee_Colony_/5270983

  4. Atmani, A., Lashkari, R., Caron, R.: A mathematical programming approach to joint cell formation and operation allocation in cellular manufacturing. Int. J. Prod. Res. 33(1), 1–15 (1995)

    Article  MATH  Google Scholar 

  5. Boctor, F.F.: A linear formulation of the machine-part cell formation problem. Int. J. Prod. Res. 29(2), 343–356 (1991)

    Article  Google Scholar 

  6. Burbidge, J.L.: Production flow analysis for planning group technology. J. Oper. Manag. 10(1), 5–27 (1991)

    Article  Google Scholar 

  7. Deriche, R., Fizazi, H.: The artificial bee colony algorithm for unsupervised classification of meteorological satellite images. Int. J. Comput. Appl. 112(12) (2015)

    Google Scholar 

  8. Deutsch, S.J., Freeman, S.F., Helander, M.: Manufacturing cell formation using an improved p-median model. Comput. Ind. Eng. 34(1), 135–146 (1998)

    Article  Google Scholar 

  9. Duran, O., Rodriguez, N., Consalter, L.A.: Hybridization of PSO and a discrete position update scheme techniques for manufacturing cell design. In: Gelbukh, A., Morales, E.F. (eds.) MICAI 2008. LNCS, vol. 5317, pp. 503–512. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88636-5_48

    Chapter  Google Scholar 

  10. Durán, O., Rodriguez, N., Consalter, L.A.: Collaborative particle swarm optimization with a data mining technique for manufacturing cell design. Expert Syst. Appl. 37(2), 1563–1567 (2010)

    Article  Google Scholar 

  11. James, T.L., Brown, E.C., Keeling, K.B.: A hybrid grouping genetic algorithm for the cell formation problem. Comput. Oper. Res. 34(7), 2059–2079 (2007)

    Article  MATH  Google Scholar 

  12. Karaboga, D., Basturk, B.: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS, vol. 4529, pp. 789–798. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72950-1_77

    Chapter  Google Scholar 

  13. Kusiak, A.: The part families problem in flexible manufacturing systems. Ann. Oper. Res. 3(6), 277–300 (1985)

    Article  Google Scholar 

  14. Li, B., Liu, F., Bai, X.: Artificial bee colony algorithm optimization for human-machine interface layout of cabin driver’s desk. In: Proceedings of the Fourth International Conference on Information Science and Cloud Computing (ISCC 2015), Guangzhou, China, 18–19 December 2015 (2015)

    Google Scholar 

  15. Lozano, S., Adenso-Diaz, B., Eguia, I., Onieva, L., et al.: A one-step tabu search algorithm for manufacturing cell design. J. Oper. Res. Soc. 50(5), 509–516 (1999)

    Article  MATH  Google Scholar 

  16. Menon, N., Ramakrishnan, R.: Brain tumor segmentation in MRI images using unsupervised artificial bee colony algorithm and FCM clustering. In: 2015 International Conference on Communications and Signal Processing (ICCSP), pp. 0006–0009. IEEE (2015)

    Google Scholar 

  17. Nsakanda, A.L., Diaby, M., Price, W.L.: Hybrid genetic approach for solving large-scale capacitated cell formation problems with multiple routings. Eur. J. Oper. Res. 171(3), 1051–1070 (2006)

    Article  MATH  Google Scholar 

  18. Oliva-Lopez, E., Purcheck, G.: Load balancing for group technology planning and control. Int. J. Mach. Tool Des. Res. 19(4), 259–274 (1979)

    Article  Google Scholar 

  19. Purcheck, G.F.: A linear programming method for the combinatorial grouping of an incomplete power set (1975)

    Google Scholar 

  20. Seifoddini, H., Hsu, C.P.: Comparative study of similarity coefficients and clustering algorithms in cellular manufacturing. J. Manuf. Syst. 13(2), 119–127 (1994)

    Article  Google Scholar 

  21. Shargal, M., Shekhar, S., Irani, S.: Evaluation of search algorithms and clustering efficiency measures for machine-part matrix clustering. IIE Trans. 27(1), 43–59 (1995)

    Article  Google Scholar 

  22. Soto, R., Crawford, B., Almonacid, B., Paredes, F.: A migrating birds optimization algorithm for machine-part cell formation problems. In: Sidorov, G., Galicia-Haro, S.N. (eds.) MICAI 2015. LNCS, vol. 9413, pp. 270–281. Springer, Cham (2015). doi:10.1007/978-3-319-27060-9_22

    Chapter  Google Scholar 

  23. Soto, R., Crawford, B., Almonacid, B., Paredes, F.: Efficient parallel sorting for migrating birds optimization when solving machine-part cell formation problems. Sci. Program. (2016)

    Google Scholar 

  24. Soto, R., Crawford, B., Vega, E., Johnson, F., Paredes, F.: Solving manufacturing cell design problems using a shuffled frog leaping algorithm. In: Gaber, T., Hassanien, A.E., El-Bendary, N., Dey, N. (eds.) The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt. AISC, vol. 407, pp. 253–261. Springer, Cham (2016). doi:10.1007/978-3-319-26690-9_23

    Chapter  Google Scholar 

  25. Soto, R., Kjellerstrand, H., Durán, O., Crawford, B., Monfroy, E., Paredes, F.: Cell formation in group technology using constraint programming and boolean satisfiability. Expert Syst. Appl. 39(13), 11423–11427 (2012)

    Article  Google Scholar 

  26. Srinivasan, G.: A clustering algorithm for machine cell formation in group technology using minimum spanning trees. Int. J. Prod. Res. 32(9), 2149–2158 (1994)

    Article  MATH  Google Scholar 

  27. Wu, T.H., Chang, C.C., Chung, S.H.: A simulated annealing algorithm for manufacturing cell formation problems. Expert Syst. Appl. 34(3), 1609–1617 (2008)

    Article  Google Scholar 

  28. Xambre, A.R., Vilarinho, P.M.: A simulated annealing approach for manufacturing cell formation with multiple identical machines. Eur. J. Oper. Res. 151(2), 434–446 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yurtkuran, A., Emel, E.: A discrete artificial bee colony algorithm for single machine scheduling problems. Int. J. Prod. Res. 1–19 (2016)

    Google Scholar 

Download references

Acknowledgements

Ricardo Soto is supported by Grant CONICYT/FONDECYT/REGULAR/1160455. Broderick Crawford is supported by Grant CONICYT/FONDECYT/REGULAR/1171243. Boris Almonacid is supported by Postgraduate Grant Pontificia Universidad Católica de Valparaíso, Chile (VRIEA 2016 and INF-PUCV 2015) and by Animal Behavior Society, USA (Developing Nations Research Awards 2016). Also, we thank the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leandro Vásquez or Roberto Zulantay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Soto, R. et al. (2017). Solving the Manufacturing Cell Design Problem Using the Artificial Bee Colony Algorithm. In: Phon-Amnuaisuk, S., Ang, SP., Lee, SY. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2017. Lecture Notes in Computer Science(), vol 10607. Springer, Cham. https://doi.org/10.1007/978-3-319-69456-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69456-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69455-9

  • Online ISBN: 978-3-319-69456-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics