Skip to main content

Reasoning About Periodicity on Infinite Words

  • Conference paper
  • First Online:
Dependable Software Engineering. Theories, Tools, and Applications (SETTA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10606))

Abstract

Characterization of temporal properties is the original purpose of inventing of temporal logics. In this paper, we show that the property like “some event holds periodically” is not omega-regular. Such property is called “periodicity”, which plays an important role in task scheduling and system design. To give a characterization of periodicity, we present the logic QPLTL, which is an extension of LTL via adding quantified step variables. Based on the decomposition theorem, we show that the satisfiability problem of QPLTL is PSPACE-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that we here have an extra \(\mathsf {X}\) in the formula, because k can be assigned to 0.

  2. 2.

    Remind that step variables cannot be instantiated as concrete numbers in such logic, hence we have both \(\mathsf {X}f\) and \(\mathsf {X}^k f\) in the grammar.

  3. 3.

    That is, f involves no free variable.

  4. 4.

    The encoding of \(f_q\) is enlightened by [Sch10].

  5. 5.

    We do not consider the “releases” (\(\mathsf {R}\)) operator here, which is the duality of \(\mathsf {U}\). Indeed, \(f_1\mathsf {R}f_2\) is equivalent to \(f_2\,\mathsf {W}(f_1\wedge f_2)\).

  6. 6.

    For example, when dealing with \((p_1\vee p_2\wedge \mathsf {F}p_3)\mathsf {W}\, p_4\), we need first transform the first operand into disjunctive normal form — i.e., rewrite it as \(((p_1\vee \mathsf {F}p_3)\wedge (p_2\vee \mathsf {F}p_3))\mathsf {W}\, p_4\), and then conduct the transformation with the first rule and the third rule. Similarly, for the second operand, we need first transform it into conjunctive normal form.

  7. 7.

    Note that the operator \(\mathsf {G}\) is derived from \(\mathsf {W}\).

  8. 8.

    Because, the previous transformations could guarantee that: If the outermost operator of \(f_{i,j}\) is not \(\mathsf {F}\), then no \(\mathsf {F}\) occurs in \(f_{i,j}\).

  9. 9.

    Remind that each automaton can be equivalently transformed into another one having a unique initial state, and the transformation is linear (cf. Theorem 2). Indeed, to obtain a finite alphabet, here we may temporarily take \(\mathcal {P}\) as the set constituted with propositions occurring in \(f_1\) or \(f_2\).

References

  1. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21, 181–185 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput. 2(3), 117–126 (1987)

    Article  MATH  Google Scholar 

  3. Banieqbal, B., Barringer, H.: Temporal logic with fixed points. In: Banieqbal, B., Barringer, H., Pnueli, A. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 62–74. Springer, Heidelberg (1989). doi:10.1007/3-540-51803-7_22

    Chapter  Google Scholar 

  4. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proceedings of the International Congress on Logic, Method and Philosophy of Science 1960, pp. 1–12, Palo Alto. Stanford University Press (1962)

    Google Scholar 

  5. Church, A.: A note on the Entscheidungsproblem. J. Symb. Log. 1, 101–102 (1936)

    Article  MATH  Google Scholar 

  6. Clarke, E.M., Schlingloff, B.: Model checking. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning. vol. 2, Chapt. 24, pp. 1369–1522. MIT and Elsevier Science Publishers (2001)

    Google Scholar 

  7. Diekert, V., Gastin, P.: First-order definable languages. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas], vol. 2, pp. 261–306. Amsterdam University Press (2008)

    Google Scholar 

  8. Gödel, K.: Über formal unentscheidbare sätze der principia mathematica und verwandter system I. Monatshefte für Methematik und Physik 38, 173–198 (1931)

    Article  MATH  Google Scholar 

  9. Leucker, M., Sánchez, C.: Regular linear temporal logic. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 291–305. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75292-9_20

    Chapter  Google Scholar 

  10. McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Inf. Comput. 9, 521–530 (1966)

    MathSciNet  MATH  Google Scholar 

  11. Pnueli, A.: The temporal logic of programs. In: Proceedings of 18th IEEE Symposium on Foundation of Computer Science (FOCS 1977), pp. 46–57. IEEE Computer Society (1977)

    Google Scholar 

  12. Rabin, M.O.: Decidability of second order theories and automata on infinite trees. Trans. AMS 141, 1–35 (1969)

    MathSciNet  MATH  Google Scholar 

  13. Schweikardt, N.: On the expressive power of monadic least fixed point logic. Theor. Comput. Sci. 350(2–3), 1123–1135 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Sebastiani, R., Tonetta, S.: “More deterministic” vs. “smaller” Büchi automata for efficient LTL model checking. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 126–140. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39724-3_12

    Chapter  Google Scholar 

  15. Taurainen, H., Heljanko, K.: Testing LTL formula translation into Büchi automata. STTT 4, 57–70 (2002)

    Article  Google Scholar 

  16. Thomas, W.: Star-free regular sets of omega-sequences. Inf. Control 42, 148–156 (1979)

    Article  MATH  Google Scholar 

  17. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1–37 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wolper, P.: Temporal logic can be more expressive. Inf. Control 56(1–2), 72–99 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The first author would thank Normann Decker, Daniel Thoma and Martin Leucker for the fruitful discussion on this problem. We would also thank the anonymous reviewers for their valuable comments on an earlier version of this paper. Wanwei Liu is supported by Natural Science Foundation of China (No. 61103012, No. 61379054, and No. 61532007). Fu Song is supported by Natural Science Foundation of China (No. 61402179 and No. 61532019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanwei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liu, W., Song, F., Zhou, G. (2017). Reasoning About Periodicity on Infinite Words. In: Larsen, K., Sokolsky, O., Wang, J. (eds) Dependable Software Engineering. Theories, Tools, and Applications. SETTA 2017. Lecture Notes in Computer Science(), vol 10606. Springer, Cham. https://doi.org/10.1007/978-3-319-69483-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69483-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69482-5

  • Online ISBN: 978-3-319-69483-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics