Abstract
Interval Markov decision processes (IMDPs) extend classical MDPs by allowing intervals to be used as transition probabilities. They provide a powerful modelling tool for probabilistic systems with an additional variation or uncertainty that relaxes the need of knowing the exact transition probabilities, which are usually difficult to get from real systems. In this paper, we discuss a notion of alternating probabilistic bisimulation to reduce the size of the IMDPs while preserving the probabilistic CTL properties it satisfies from both computational complexity and compositional reasoning perspectives. Our alternating probabilistic bisimulation stands on the competitive way of resolving the IMDP nondeterminism which in turn finds applications in the settings of the controller (parameter) synthesis for uncertain (parallel) probabilistic systems. By using the theory of linear programming, we improve the complexity of computing the bisimulation from the previously known EXPTIME to PTIME. Moreover, we show that the bisimulation for IMDPs is a congruence with respect to two facets of parallelism, namely synchronous product and interleaving. We finally demonstrate the practical effectiveness of our proposed approaches by applying them on several case studies using a prototypical tool.
This work is supported by the ERC Advanced Investigators Grant 695614 (POWVER), by the CAS/SAFEA International Partnership Program for Creative Research Teams, by the National Natural Science Foundation of China (Grants No. 61550110506 and 61650410658), by the Chinese Academy of Sciences Fellowship for International Young Scientists, and by the CDZ project CAP (GZ 1023).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 163–178. Springer, Heidelberg (1998). doi:10.1007/BFb0055622
Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge (2008)
Ben-Or, M.: Another advantage of free choice: completely asynchronous agreement protocols (extended abstract). In: PODC, pp. 27–30 (1983)
Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval Markov chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 32–46. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7_3
Böde, E., Herbstritt, M., Hermanns, H., Johr, S., Peikenkamp, T., Pulungan, R., Rakow, J., Wimmer, R., Becker, B.: Compositional dependability evaluation for STATEMATE. ITSE 35(2), 274–292 (2009)
Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation. In: Brim, L., Křetínský, M., Kučera, A., Jančar, P. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 371–386. Springer, Heidelberg (2002). doi:10.1007/3-540-45694-5_25
Chatterjee, K., Sen, K., Henzinger, T.A.: Model-checking \(\omega \)-regular properties of interval Markov chains. In: Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp. 302–317. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78499-9_22
Chehaibar, G., Garavel, H., Mounier, L., Tawbi, N., Zulian, F.: Specification, verification of the PowerScale® bus arbitration protocol: An industrial experiment with LOTOS. In: FORTE, pp. 435–450 (1996)
Coste, N., Hermanns, H., Lantreibecq, E., Serwe, W.: Towards performance prediction of compositional models in industrial GALS designs. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 204–218. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4_18
Delahaye, B., Katoen, J.-P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F., Wąsowski, A.: Abstract probabilistic automata. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 324–339. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18275-4_23
Delahaye, B., Katoen, J.-P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F., Wasowski, A.: New results on abstract probabilistic automata. In: ACSD, pp. 118–127 (2011)
Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wąsowski, A.: Decision problems for interval Markov Chains. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 274–285. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21254-3_21
Fecher, H., Leucker, M., Wolf, V.: Don’t Know in probabilistic systems. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 71–88. Springer, Heidelberg (2006). doi:10.1007/11691617_5
Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)
Gebler, D., Hashemi, V., Turrini, A.: Computing behavioral relations for probabilistic concurrent systems. In: Remke, A., Stoelinga, M. (eds.) Stochastic Model Checking. Rigorous Dependability Analysis Using Model Checking Techniques for Stochastic Systems. LNCS, vol. 8453, pp. 117–155. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45489-3_5
Givan, R., Leach, S.M., Dean, T.L.: Bounded-parameter Markov decision processes. Artif. Intell. 122(1–2), 71–109 (2000)
Hahn, E.M., Han, T., Zhang, L.: Synthesis for PCTL in parametric markov decision processes. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 146–161. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20398-5_12
Hahn, E.M., Hashemi, V., Hermanns, H., Turrini, A.: Exploiting robust optimization for interval probabilistic bisimulation. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp. 55–71. Springer, Cham (2016). doi:10.1007/978-3-319-43425-4_4
Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Asp. Comput. 6(5), 512–535 (1994)
Hashemi, V., Hatefi, H., Krčál, J.: Probabilistic bisimulations for PCTL model checking of interval MDPs. In: SynCoP, pp. 19–33. EPTCS (2014)
Hashemi, V., Hermanns, H., Song, L., Subramani, K., Turrini, A., Wojciechowski, P.: Compositional bisimulation minimization for interval Markov decision processes. In: Dediu, A.-H., Janoušek, J., Martín-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 114–126. Springer, Cham (2016). doi:10.1007/978-3-319-30000-9_9
Hashemi, V., Hermanns, H., Turrini, A.: Compositional reasoning for interval Markov decision processes. http://arxiv.org/abs/1607.08484
Hermanns, H., Katoen, J.-P.: Automated compositional Markov chain generation for a plain-old telephone system. SCP 36(1), 97–127 (2000)
Iyengar, G.N.: Robust dynamic programming. Math. Oper. Res. 30(2), 257–280 (2005)
Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: LICS, pp. 266–277 (1991)
Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three problems of equivalence. I&C, pp. 43–68 (1990)
Katoen, J.-P., Kemna, T., Zapreev, I., Jansen, D.N.: Bisimulation minimisation mostly speeds up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 87–101. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71209-1_9
Kozine, I., Utkin, L.V.: Interval-valued finite Markov chains. Reliable Comput. 8(2), 97–113 (2002)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_47
Lahijanian, M., Andersson, S.B., Belta, C.: Formal verification and synthesis for discrete-time stochastic systems. IEEE Tr. Autom. Contr. 60(8), 2031–2045 (2015)
Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing (preliminary report). In: POPL, pp. 344–352 (1989)
Luna, R., Lahijanian, M., Moll, M., Kavraki, L.E.: Asymptotically optimal stochastic motion planning with temporal goals. In: Akin, H.L., Amato, N.M., Isler, V., van der Stappen, A.F. (eds.) Algorithmic Foundations of Robotics XI. STAR, vol. 107, pp. 335–352. Springer, Cham (2015). doi:10.1007/978-3-319-16595-0_20
Luna, R., Lahijanian, M., Moll, M., Kavraki, L.E.: Fast stochastic motion planning with optimality guarantees using local policy reconfiguration. In: ICRA, pp. 3013–3019 (2014)
Luna, R., Lahijanian, M., Moll, M., Kavraki, L.E.: Optimal and efficient stochastic motion planning in partially-known environments. In: AAAI, pp. 2549–2555 (2014)
Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)
PRISM model checker. http://www.prismmodelchecker.org/
Puggelli, A.: Formal Techniques for the Verification and Optimal Control of Probabilistic Systems in the Presence of Modeling Uncertainties. Ph.D. thesis, EECS Department, University of California, Berkeley (2014)
Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527–542. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_35
Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)
Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D. thesis, MIT (1995)
Segala, R.: Probability and nondeterminism in operational models of concurrency. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 64–78. Springer, Heidelberg (2006). doi:10.1007/11817949_5
Sen, K., Viswanathan, M., Agha, G.: Model-checking markov chains in the presence of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 394–410. Springer, Heidelberg (2006). doi:10.1007/11691372_26
Wolff, E.M., Topcu, U., Murray, R.M.: Robust control of uncertain Markov decision processes with temporal logic specifications. In: CDC, pp. 3372–3379 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Hashemi, V., Turrini, A., Hahn, E.M., Hermanns, H., Elbassioni, K. (2017). Polynomial-Time Alternating Probabilistic Bisimulation for Interval MDPs. In: Larsen, K., Sokolsky, O., Wang, J. (eds) Dependable Software Engineering. Theories, Tools, and Applications. SETTA 2017. Lecture Notes in Computer Science(), vol 10606. Springer, Cham. https://doi.org/10.1007/978-3-319-69483-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-69483-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69482-5
Online ISBN: 978-3-319-69483-2
eBook Packages: Computer ScienceComputer Science (R0)