Abstract
Statistical model checking uses simulation to overcome the state space explosion problem in formal verification. Yet its runtime explodes when faced with rare events, unless a rare event simulation method like importance splitting is used. The effectiveness of importance splitting hinges on nontrivial model-specific inputs: an importance function with matching splitting thresholds. This prevents its use by non-experts for general classes of models. In this paper, we propose new method combinations with the goal of fully automating the selection of all parameters for importance splitting. We focus on transient (reachability) properties, which particularly challenged previous techniques, and present an exhaustive practical evaluation of the new approaches on case studies from the literature. We find that using Restart simulations with a compositionally constructed importance function and thresholds determined via a new expected success method most reliably succeeds and performs very well. Our implementation within the Modest Toolset supports various classes of formal stochastic models and is publicly available.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We rely on the standard CLT assumption for large enough sample sizes; to this end, we do not stop before we obtain at least one sample \(>0\) and at least 50 samples.
References
Amrein, M., Künsch, H.R.: A variant of importance splitting for rare event estimation: Fixed number of successes. ACM Trans. Model. Comput. Simul. 21(2), 13:1–13:20 (2011)
Bayes, A.J.: Statistical techniques for simulation models. Aust. Comput. J. 2(4), 180–184 (1970)
Budde, C.E.: Automation of Importance Splitting Techniques for Rare Event Simulation. Ph.D. thesis, Universidad Nacional de Córdoba, Córdoba, Argentina (2017)
Budde, C.E., D’Argenio, P.R., Monti, R.E.: Compositional construction of importance functions in fully automated importance splitting. In: VALUETOOLS (2016)
Cérou, F., Guyader, A.: Adaptive multilevel splitting for rare event analysis. Stoch. Anal. Appl. 25(2), 417–443 (2007)
Cérou, F., Moral, P.D., Furon, T., Guyader, A.: Sequential Monte Carlo for rare event estimation. Stat. Comput. 22(3), 795–808 (2012)
D’Argenio, P.R., Hartmanns, A., Legay, A., Sedwards, S.: Statistical approximation of optimal schedulers for probabilistic timed automata. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 99–114. Springer, Cham (2016). doi:10.1007/978-3-319-33693-0_7
D’Argenio, P.R., Lee, M.D., Monti, R.E.: Input/Output stochastic automata. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 53–68. Springer, Cham (2016). doi:10.1007/978-3-319-44878-7_4
Garvels, M.J.J., Kroese, D.P.: A comparison of RESTART implementations. In: Winter Simulation Conference, WSC, pp. 601–608 (1998)
Garvels, M.J.J., van Ommeren, J.C.W., Kroese, D.P.: On the importance function in splitting simulation. Eur. Trans. Telecommun. 13(4), 363–371 (2002)
Garvels, M.J.J.: The splitting method in rare event simulation. Ph.D. thesis, University of Twente, Enschede, The Netherlands (2000)
Glasserman, P., Heidelberger, P., Shahabuddin, P., Zajic, T.: A large deviations perspective on the efficiency of multilevel splitting. IEEE Trans. Autom. Control 43(12), 1666–1679 (1998)
Glasserman, P., Heidelberger, P., Shahabuddin, P., Zajic, T.: Multilevel splitting for estimating rare event probabilities. Oper. Res. 47(4), 585–600 (1999)
Hahn, E.M., Hartmanns, A., Hermanns, H.: Reachability and reward checking for stochastic timed automata. In: ECEASST 70 (2014)
Hartmanns, A., Hermanns, H.: A Modest approach to checking probabilistic timed automata. In: QEST, pp. 187–196. IEEE Computer Society (2009)
Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8_51
Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24622-0_8
Jegourel, C., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., Sedwards, S.: Importance sampling for stochastic timed automata. In: Fränzle, M., Kapur, D., Zhan, N. (eds.) SETTA 2016. LNCS, vol. 9984, pp. 163–178. Springer, Cham (2016). doi:10.1007/978-3-319-47677-3_11
Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model checking rare properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 576–591. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_38
Jegourel, C., Legay, A., Sedwards, S.: An effective heuristic for adaptive importance splitting in statistical model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 143–159. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45231-8_11
Kroese, D.P., Nicola, V.F.: Efficient estimation of overflow probabilities in queues with breakdowns. Perform. Eval. 36, 471–484 (1999)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_47
Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. Theor. Comput. Sci. 282(1), 101–150 (2002)
L’Ecuyer, P., Demers, V., Tuffin, B.: Rare events, splitting, and quasi-Monte Carlo. ACM Trans. Model. Comput. Simul. 17(2) (2007)
LeGland, F., Oudjane, N.: A sequential particle algorithm that keeps the particle system alive. In: EUSIPCO, pp. 1–4. IEEE (2005)
Paolieri, M., Horváth, A., Vicario, E.: Probabilistic model checking of regenerative concurrent systems. IEEE Trans. Softw. Eng. 42(2), 153–169 (2016)
Reijsbergen, D., de Boer, P.-T., Scheinhardt, W., Haverkort, B.: Automated rare event simulation for stochastic Petri nets. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 372–388. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40196-1_31
Rubino, G., Tuffin, B. (eds.): Rare Event Simulation Using Monte Carlo Methods. Wiley (2009)
Villén-Altamirano, J.: Rare event RESTART simulation of two-stage networks. Eur. J. Oper. Res. 179(1), 148–159 (2007)
Villén-Altamirano, M., Villén-Altamirano, J.: RESTART: a method for accelerating rare event simulations. In: Queueing, Performance and Control in ATM (ITC-13), pp. 71–76. Elsevier (1991)
Villén-Altamirano, M., Villén-Altamirano, J.: RESTART: a straightforward method for fast simulation of rare events. In: WSC, pp. 282–289. ACM (1994)
Villén-Altamirano, M., Villén-Altamirano, J.: Analysis of restart simulation: theoretical basis and sensitivity study. Eur. Trans. Telecommun. 13(4), 373–385 (2002)
Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002). doi:10.1007/3-540-45657-0_17
Zimmermann, A., Maciel, P.: Importance function derivation for RESTART simulations of Petri nets. In: RESIM 2012, pp. 8–15 (2012)
Zimmermann, A., Reijsbergen, D., Wichmann, A., Canabal Lavista, A.: Numerical results for the automated rare event simulation of stochastic Petri nets. In: RESIM, pp. 1–10 (2016)
Acknowledgements
We are grateful to José Villén-Altamirano for very helpful discussions that led to our eventual design of the expected success method.
This work is supported by the 3TU.BSR project, ERC grant 695614 (POWVER), the NWO SEQUOIA project, and SeCyT-UNC projects 05/BP12 and 05/B497.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Budde, C.E., D’Argenio, P.R., Hartmanns, A. (2017). Better Automated Importance Splitting for Transient Rare Events. In: Larsen, K., Sokolsky, O., Wang, J. (eds) Dependable Software Engineering. Theories, Tools, and Applications. SETTA 2017. Lecture Notes in Computer Science(), vol 10606. Springer, Cham. https://doi.org/10.1007/978-3-319-69483-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-69483-2_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69482-5
Online ISBN: 978-3-319-69483-2
eBook Packages: Computer ScienceComputer Science (R0)