Skip to main content

Automatic Data-Driven Room Design Generation

  • Conference paper
  • First Online:
Next Generation Computer Animation Techniques (AniNex 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10582))

Abstract

In this work, we address a novel and practical problem of automatically generating a room design from given room function and basic geometry, which can be described as picking appropriate objects from a given database, and placing the objects with a group of pre-defined criteria. We formulate both object selection and placement problems as probabilistic models. The object selection is first formulated as a supervised generative model, to take room function into consideration. Object placement problem is then formulated as a Bayesian model, where parameters are inferred with Maximizing a Posteriori (MAP) objective. By introducing a solver based on Markov Chain Monte Carlo (MCMC), the placement problem is solved efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sketchup (2017). http://www.sketchup.com

  2. Autodesk revit (2017). https://www.autodesk.com/products/revit-family/overview

  3. Archicad (2017). http://www.graphisoft.com/archicad/

  4. Fisher, M., Hanrahan, P.: Context-based search for 3d models. ACM Transactions on Graphics (TOG) 29(4), 182 (2010)

    Google Scholar 

  5. Savva, M., Chang, A.X., Agrawala, M.: Scenesuggest: Context-driven 3D scene design. arXiv preprint arXiv:1703.00061 (2017)

  6. Fisher, M., Ritchie, D., Savva, M., Funkhouser, T., Hanrahan, P.: Example-based synthesis of 3D object arrangements. ACM Trans. Graphics (TOG) 30(4), 135 (2012)

    Google Scholar 

  7. Yu, L.F., Yeung, S.K., Terzopoulos, D.: The clutterpalette: an interactive tool for detailing indoor scenes. IEEE Trans. Visual Comput. Graphics 22(2), 1138–1148 (2016)

    Article  Google Scholar 

  8. Xu, K., Chen, K., Fu, H., Sun, W.L., Hu, S.M.: Sketch2Scene: Sketch-based co-retrieval and co-placement of 3D models. ACM Trans. Graphics (TOG) 32(4), 123 (2013)

    Article  Google Scholar 

  9. Chang, A.X., Eric, M., Savva, M., Manning, C.D.: SceneSeer: 3D scene design with natural language. arXiv preprint arXiv:1703.00050 (2017)

  10. Merrell, P., Schkufza, E., Li, Z., Agrawala, M., Koltun, V.: Interactive furniture layout using interior design guidelines. ACM Trans. Graphics (TOG) 30(4), 87 (2011)

    Article  Google Scholar 

  11. Yu, L.F., Yeung, S.K., Tang, C.K., Terzopoulos, D., Chan, T.F., Osher, S.J.: Make it home: automatic optimization of furniture arrangement. ACM Trans. Graphics (TOG) 30(4), 86 (2011)

    Article  Google Scholar 

  12. Yeh, Y.T., Yang, L., Watson, M., Goodman, N.D., Hanrahan, P.: Synthesizing open worlds with constraints using locally annealed reversible jump mcmc. ACM Trans. Graphics (TOG) 31(4), 56 (2012)

    Article  Google Scholar 

  13. Xiao, J., Owens, A., Torralba, A.: SUN3D: A database of big spaces reconstructed using SfM and object labels. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1625–1632 (2013)

    Google Scholar 

  14. The sims 4 (2017). https://www.thesims.com/

  15. Papadimitriou, C.H., Tamaki, H., Raghavan, P., Vempala, S.: Latent semantic indexing: a probabilistic analysis. In: Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 159–168. ACM (1998)

    Google Scholar 

  16. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)

    MATH  Google Scholar 

  17. Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled LDA: a supervised topic model for credit attribution in multi-labeled corpora. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, vol. 1, pp. 248–256. Association for Computational Linguistics (2009)

    Google Scholar 

  18. Liu, J.S.: The collapsed gibbs sampler in Bayesian computations with applications to a gene regulation problem. J. Am. Stat. Assoc. 89(427), 958–966 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Experience 21(11), 1129–1164 (1991)

    Article  Google Scholar 

  20. Fisher, M., Savva, M., Hanrahan, P.: Characterizing structural relationships in scenes using graph kernels. ACM Trans. Graphics (TOG) 30(4), 34 (2011)

    Article  Google Scholar 

  21. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. Theory Methods 3(1), 1–27 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  22. Liu, J.S., Liang, F., Wong, W.H.: The multiple-try method and local optimization in metropolis sampling. J. Am. Stat. Assoc. 95(449), 121–134 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Griffiths, D., Tenenbaum, M.: Hierarchical topic models and the nested chinese restaurant process. Adv. Neural Inform. Process. Syst. 16, 17 (2004)

    Google Scholar 

  24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Research Grant of Beijing Higher Institution Engineering Research Center and the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n\(^{\circ }\) [612627].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-Hai Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, Y., Zhang, SH., Martin, R.R. (2017). Automatic Data-Driven Room Design Generation. In: Chang, J., Zhang, J., Magnenat Thalmann, N., Hu, SM., Tong, R., Wang, W. (eds) Next Generation Computer Animation Techniques. AniNex 2017. Lecture Notes in Computer Science(), vol 10582. Springer, Cham. https://doi.org/10.1007/978-3-319-69487-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69487-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69486-3

  • Online ISBN: 978-3-319-69487-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics