Skip to main content

Virtual Reality Surgery Simulation: A Survey on Patient Specific Solution

  • Conference paper
  • First Online:
Next Generation Computer Animation Techniques (AniNex 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10582))

Abstract

For surgeons, the precise anatomy structure and its dynamics are important in the surgery interaction, which is critical for generating the immersive experience in VR based surgical training applications. Presently, a normal therapeutic scheme might not be able to be straightforwardly applied to a specific patient, because the diagnostic results are based on averages, which result in a rough solution. Patient Specific Modeling (PSM), using patient-specific medical image data (e.g. CT, MRI, or Ultrasound), could deliver a computational anatomical model. It provides the potential for surgeons to practice the operation procedures for a particular patient, which will improve the accuracy of diagnosis and treatment, thus enhance the prophetic ability of VR simulation framework and raise the patient care. This paper presents a general review based on existing literature of patient specific surgical simulation on data acquisition, medical image segmentation, computational mesh generation, and soft tissue real time simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)

    Article  Google Scholar 

  2. Alliez, P., Cohen-Steiner, D., Yvinec, M., Desbrun, M.: Variational tetrahedral meshing. ACM Trans. Graph. (TOG) 24, 617–625 (2005). ACM

    Article  Google Scholar 

  3. Antiga, L., Piccinelli, M., Botti, L., Ene-Iordache, B., Remuzzi, A., Steinman, D.A.: An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46(11), 1097 (2008)

    Article  Google Scholar 

  4. Badash, I., Burtt, K., Solorzano, C.A., Carey, J.N.: Innovations in surgery simulation: a review of past, current and future techniques. Ann. Transl. Med. 4(23), 453 (2016)

    Article  Google Scholar 

  5. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–54. ACM (1998)

    Google Scholar 

  6. Barratt, D.C., Chan, C.S., Edwards, P.J., Penney, G.P., Slomczykowski, M., Carter, T.J., Hawkes, D.J.: Instantiation and registration of statistical shape models of the femur and pelvis using 3d ultrasound imaging. Med. Image Anal. 12(3), 358–374 (2008)

    Article  Google Scholar 

  7. Bender, J., Koschier, D., Charrier, P., Weber, D.: Position-based simulation of continuous materials. Comput. Graph. 44, 1–10 (2014)

    Article  Google Scholar 

  8. Boltcheva, D., Yvinec, M., Boissonnat, J.D.: Mesh generation from 3d multi-material images. In: Medical Image Computing and Computer-Assisted Intervention MICCAI 2009, pp. 283–290 (2009)

    Google Scholar 

  9. Bonet, J., Burton, A.: A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications. Int. J. Numer. Meth. Biomed. Eng. 14(5), 437–449 (1998)

    MATH  MathSciNet  Google Scholar 

  10. Bouaziz, S., Martin, S., Liu, T., Kavan, L., Pauly, M.: Projective dynamics: fusing constraint projections for fast simulation. ACM Trans. Graph. (TOG) 33(4), 154 (2014)

    Article  Google Scholar 

  11. Bryson, S.: Virtual reality in scientific visualization. Commun. ACM 39(5), 62–71 (1996)

    Article  Google Scholar 

  12. Cevidanes, L.H., Tucker, S., Styner, M., Kim, H., Chapuis, J., Reyes, M., Proffit, W., Turvey, T., Jaskolka, M.: Three-dimensional surgical simulation. Am. J. Orthod. Dentofac. Orthop. 138(3), 361–371 (2010)

    Article  Google Scholar 

  13. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998). doi:10.1007/BFb0054760

    Chapter  Google Scholar 

  14. Cootes, T.F., Taylor, C.J.: Active shape models-‘smart snakes’. In: Hogg, D., Boyle, R. (eds.) BMVC 1992, pp. 266–275. Springer, London (1992)

    Google Scholar 

  15. Davis, J.E.: The use of simulation in causal analysis of sentinel events in healthcare. Ph.D. thesis, University of Pennsylvania (2016)

    Google Scholar 

  16. Duffy, A., Hogle, N., McCarthy, H., Lew, J., Egan, A., Christos, P., Fowler, D.: Construct validity for the LapSim laparoscopic surgical simulator. Surg. Endosc. Interv. Tech. 19(3), 401–405 (2005)

    Article  Google Scholar 

  17. Endo, K., Sata, N., Ishiguro, Y., Miki, A., Sasanuma, H., Sakuma, Y., Shimizu, A., Hyodo, M., Lefor, A., Yasuda, Y.: A patient-specific surgical simulator using preoperative imaging data: an interactive simulator using a three-dimensional tactile mouse. J. Comput. Surg. 1(1), 10 (2014)

    Article  Google Scholar 

  18. Eschweiler, J., Stromps, J.P., Fischer, M., Schick, F., Rath, B., Pallua, N., Radermacher, K.: A biomechanical model of the wrist joint for patient-specific model guided surgical therapy: part 2. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 230(4), 326–334 (2016)

    Article  Google Scholar 

  19. Eschweiler, J., Stromps, J.P., Fischer, M., Schick, F., Rath, B., Pallua, N., Radermacher, K.: Development of a biomechanical model of the wrist joint for patient-specific model guided surgical therapy planning: part 1. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 230(4), 310–325 (2016)

    Article  Google Scholar 

  20. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., et al.: 3d slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imag. 30(9), 1323–1341 (2012)

    Article  Google Scholar 

  21. Gallagher, A.G., Ritter, E.M., Champion, H., Higgins, G., Fried, M.P., Moses, G., Smith, C.D., Satava, R.M.: Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann. Surg. 241(2), 364–372 (2005)

    Article  Google Scholar 

  22. Goel, V.R., Greenberg, R.K., Greenberg, D.P.: Mathematical analysis of DICOM CT datasets: can endograft sizing be automated for complex anatomy? J. Vasc. Surg. 47(6), 1306–1312 (2008)

    Article  Google Scholar 

  23. Gonzalez, R., Wintz, P.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (1977)

    MATH  Google Scholar 

  24. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. Royal Stat. Soc. Ser. C (Applied Statistics) 28(1), 100–108 (1979)

    MATH  Google Scholar 

  25. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  26. Heimann, T., Meinzer, H.P.: Statistical shape models for 3d medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)

    Article  Google Scholar 

  27. Indira, S., Ramesh, A.: Image segmentation using artificial neural network and genetic algorithm: a comparative analysis. In: 2011 International Conference on Process Automation, Control and Computing (PACC), pp. 1–6. IEEE (2011)

    Google Scholar 

  28. Iwamoto, N., Shum, H.P., Yang, L., Morishima, S.: Multi-layer lattice model for real-time dynamic character deformation. Comput. Graph. Forum 34, 99–109 (2015). Wiley Online Library

    Article  Google Scholar 

  29. Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision, vol. 5. McGraw-Hill, New York (1995)

    Google Scholar 

  30. Jamin, C., Alliez, P., Yvinec, M., Boissonnat, J.D.: CGALmesh: a generic framework for delaunay mesh generation. ACM Trans. Math. Softw. (TOMS) 41(4), 23 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  31. Johnson, C.: Biomedical visual computing: case studies and challenges. Comput. Sci. Eng. 14(1), 12–21 (2012)

    Article  Google Scholar 

  32. Kent, D.M., Hayward, R.A.: Limitations of applying summary results of clinical trials to individual patients: the need for risk stratification. JAMA 298(10), 1209–1212 (2007)

    Article  Google Scholar 

  33. Lai, J.Y., Essomba, T., Lee, P.Y., et al.: Algorithm for segmentation and reduction of fractured bones in computer-aided preoperative surgery. In: Proceedings of the 3rd International Conference on Biomedical and Bioinformatics Engineering, pp. 12–18. ACM (2016)

    Google Scholar 

  34. Leea, C.K., Mihaib, L.A., Halec, J.S., Kerfridena, P., Bordasc, S.P.: Strain smoothing for compressible and nearly-incompressible finite elasticity. Comput. Struct. 182, 540–555 (2016)

    Article  Google Scholar 

  35. Lei, T., Sewchand, W.: Statistical approach to X-ray CT imaging and its applications in image analysis. II. A new stochastic model-based image segmentation technique for X-ray CT image. IEEE Trans. Med. Imag. 11(1), 62–69 (1992)

    Article  Google Scholar 

  36. Liu, T., Bargteil, A.W., O’Brien, J.F., Kavan, L.: Fast simulation of mass-spring systems. ACM Trans. Graph. (TOG) 32(6), 214 (2013)

    Google Scholar 

  37. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. ACM SIGGRAPH Comput. Graph. 21, 163–169 (1987). ACM

    Article  Google Scholar 

  38. Makiyama, K., Nagasaka, M., Inuiya, T., Takanami, K., Ogata, M., Kubota, Y.: Development of a patient-specific simulator for laparoscopic renal surgery. Int. J. Urol. 19(9), 829–835 (2012)

    Article  Google Scholar 

  39. Marr, D., Hildreth, E.: Theory of edge detection. Proc. Royal Soc. Lond. B Biol. Sci. 207(1167), 187–217 (1980)

    Article  Google Scholar 

  40. Mihalef, V., Ionasec, R.I., Sharma, P., Georgescu, B., Voigt, I., Suehling, M., Comaniciu, D.: Patient-specific modelling of whole heart anatomy, dynamics and haemodynamics from four-dimensional cardiac CT images. Interface Focus 1(3), 286–296 (2011)

    Article  Google Scholar 

  41. Miller, K.: Biomechanics of Brain for Computer Integrated Surgery. Warsaw University of Technology Publishing House, Warsaw (2002)

    Google Scholar 

  42. Mohamed, A., Davatzikos, C.: Finite element mesh generation and remeshing from segmented medical images. In: 2004 IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 420–423. IEEE (2004)

    Google Scholar 

  43. Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J. Vis. Commun. Image Represent. 18(2), 109–118 (2007)

    Article  Google Scholar 

  44. Neal, M.L., Kerckhoffs, R.: Current progress in patient-specific modeling. Briefings Bioinform. 11(1), 111–126 (2010)

    Article  Google Scholar 

  45. Nolden, M., Zelzer, S., Seitel, A., Wald, D., Müller, M., Franz, A.M., Maleike, D., Fangerau, M., Baumhauer, M., Maier-Hein, L., et al.: The medical imaging interaction toolkit: challenges and advances. Int. J. Comput. Assist. Radiol. Surg. 8(4), 607–620 (2013)

    Article  Google Scholar 

  46. de Oliveira, J.E., Giessler, P., Deserno, T.M.: Patient-specific anatomical modelling. In: E-Health and Bioengineering Conference (EHB), pp. 1–4. IEEE (2015)

    Google Scholar 

  47. O’Reilly, M.A., Whyne, C.M.: Comparison of computed tomography based parametric and patient-specific finite element models of the healthy and metastatic spine using a mesh-morphing algorithm. Spine 33(17), 1876–1881 (2008)

    Article  Google Scholar 

  48. Otaduy, M.A., Bickel, B., Bradley, D., Wang, H.: Data-driven simulation methods in computer graphics: cloth, tissue and faces. In: ACM SIGGRAPH 2012 Courses, p. 12. ACM (2012)

    Google Scholar 

  49. Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognit. 26(9), 1277–1294 (1993)

    Article  Google Scholar 

  50. Pan, J.J., Chang, J., Yang, X., Liang, H., Zhang, J.J., Qureshi, T., Howell, R., Hickish, T.: Virtual reality training and assessment in laparoscopic rectum surgery. Int. J. Med. Rob. Comput. Assist. Surg. 11(2), 194–209 (2015)

    Article  Google Scholar 

  51. Prewitt, J.M.: Object enhancement and extraction. Picture Process. Psychopictorics 10(1), 15–19 (1970)

    Google Scholar 

  52. Ricotta, J.J., Pagan, J., Xenos, M., Alemu, Y., Einav, S., Bluestein, D.: Cardiovascular disease management: the need for better diagnostics. Med. Biol. Eng. Comput. 46(11), 1059–1068 (2008)

    Article  Google Scholar 

  53. Rineau, L., Yvinec, M.: Meshing 3d domains bounded by piecewise smooth surfaces. In: Brewer, M.L., Marcum, D. (eds.) Proceedings of the 16th International Meshing Roundtable, pp. 443–460. Springer, Heidelberg (2008)

    Google Scholar 

  54. Schöberl, J.: Netgen an advancing front 2d/3d-mesh generator based on abstract rules. Comput. Vis. Sci. 1(1), 41–52 (1997)

    Article  MATH  Google Scholar 

  55. Sifakis, E., Barbic, J.: FEM simulation of 3d deformable solids: a practitioner’s guide to theory, discretization and model reduction. In: ACM SIGGRAPH 2012 Courses, p. 20. ACM (2012)

    Google Scholar 

  56. Viceconti, M., Davinelli, M., Taddei, F., Cappello, A.: Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies. J. Biomech. 37(10), 1597–1605 (2004)

    Article  Google Scholar 

  57. Weatherill, N.P., Hassan, O.: Efficient three-dimensional delaunay triangulation with automatic point creation and imposed boundary constraints. Int. J. Numer. Meth. Eng. 37(12), 2005–2039 (1994)

    Article  MATH  Google Scholar 

  58. Zhang, A., Hünerbein, M., Dai, Y., Schlag, P.M., Beller, S.: Construct validity testing of a laparoscopic surgery simulator (lap mentor®). Surg. Endosc. 22(6), 1440–1444 (2008)

    Article  Google Scholar 

  59. Zhang, Y., Hughes, T.J., Bajaj, C.L.: An automatic 3d mesh generation method for domains with multiple materials. Comput. Meth. Appl. Mech. Eng. 199(5), 405–415 (2010)

    Article  MATH  Google Scholar 

  60. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Mechanics. Butterworth-Heinemann, Oxford (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

We would also like to thank the People Program (Marie Curie Actions) of the European Union’s Seventh Framework Program FP7/2007-2013/ under REA grant agreement n\(^{\circ }\) [612627] for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian J. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Chang, J., Yang, X., Zhang, J.J. (2017). Virtual Reality Surgery Simulation: A Survey on Patient Specific Solution. In: Chang, J., Zhang, J., Magnenat Thalmann, N., Hu, SM., Tong, R., Wang, W. (eds) Next Generation Computer Animation Techniques. AniNex 2017. Lecture Notes in Computer Science(), vol 10582. Springer, Cham. https://doi.org/10.1007/978-3-319-69487-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69487-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69486-3

  • Online ISBN: 978-3-319-69487-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics