Skip to main content

Using Wii Balance Board to Evaluate Software Based on Kinect2

  • Conference paper
  • First Online:
ICTs for Improving Patients Rehabilitation Research Techniques (REHAB 2015)

Abstract

A balance measurement software based on Kinect2 sensor is evaluated by comparing to Wii balance board in numerical analysis level, and further improved according to the consideration of BFP (Body fat percentage) values of the user. Several person with different body types are involved into the test. The algorithm is improved by comparing the body type of the user to the ‘golden-standard’ body type. The evaluation results of the optimized algorithm preliminarily prove the reliability of the software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartlett, H.L., Ting, L.H., Bingham, J.T.: Accuracy of force and center of pressure measures of the Wii Balance Board. Gait Posture 39(1), 224–228 (2014)

    Article  Google Scholar 

  2. Challis, J.H., Winter, S.L., Kuperavage, A.J.: Comparison of male and female lower limb segment inertial properties. J. Biomech. 45(15), 2690–2692 (2012)

    Article  Google Scholar 

  3. Chambers, A.J., Sukits, A.L., McCrory, J.L., Cham, R.: The effect of obesity and gender on body segment parameters in older adults. Clin. Biomech. 25(2), 131–136 (2010)

    Article  Google Scholar 

  4. Chang, J.O., Levy, S.S., Seay, S.W., Goble, D.J.: An alternative to the balance error scoring system: using a low-cost balance board to improve the validity/reliability of sports-related concussion balance testing. Clin. J. Sport Med. 24(3), 256–262 (2014)

    Article  Google Scholar 

  5. Chen, S.-C., Hsieh, H.-J., Lu, T.-W., Tseng, C.-H.: A method for estimating subject-specific body segment inertial parameters in human movement analysis. Gait Posture 33(4), 695–700 (2011)

    Article  Google Scholar 

  6. Chen, Z., Huang, W., Lv, Z.: Towards a face recognition method based on uncorrelated discriminant sparse preserving projection. Multimedia Tools Appl., 1–15 (2015)

    Google Scholar 

  7. Clark, R.A., Bryant, A.L., Pua, Y., McCrory, P., Bennell, K., Hunt, M.: Validity and reliability of the nintendo wii balance board for assessment of standing balance. Gait Posture 31(3), 307–310 (2010)

    Article  Google Scholar 

  8. Clarkson, S., Choppin, S., Hart, J., Heller, B., Wheat, J.: Calculating body segment inertia parameters from a single rapid scan using the Microsoft Kinect. In: Proceedings of the 3rd International Conference on 3D Body Scanning Technologies, pp. 153–163 (2012)

    Google Scholar 

  9. Clarkson, S., Wheat, J., Heller, B., Choppin, S.: Assessing the suitability of the Microsoft Kinect for calculating person specific body segment parameters. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8925, pp. 372–385. Springer, Cham (2015). doi:10.1007/978-3-319-16178-5_26

    Chapter  Google Scholar 

  10. Damavandi, M., Farahpour, N., Allard, P.: Determination of body segment masses and centers of mass using a force plate method in individuals of different morphology. Med. Eng. Phys. 31(9), 1187–1194 (2009)

    Article  Google Scholar 

  11. Dang, S., Ju, J., Matthews, D., Feng, X., Zuo, C.: Efficient solar power heating system based on lenticular condensation. In: 2014 International Conference on Information Science, Electronics and Electrical Engineering (ISEEE), vol. 2, pp. 736–739, April 2014

    Google Scholar 

  12. Davidson, P.L., Wilson, S.J., Wilson, B.D., Chalmers, D.J.: Estimating subject-specific body segment parameters using a 3-Dimensional modeller program. J. Biomech. 41(16), 3506–3510 (2008)

    Article  Google Scholar 

  13. De Leva, P.: Adjustments to zatsiorsky-seluyanov’s segment inertia parameters. J. Biomech. 29(9), 1223–1230 (1996)

    Article  Google Scholar 

  14. Dumas, R., Cheze, L., Verriest, J.-P.: Adjustments to Mcconville et al. and Young et al. body segment inertial parameters. J. Biomech. 40(3), 543–553 (2007)

    Article  Google Scholar 

  15. Goble, D.: Btracks (2015). http://balancetrackingsystems.com

  16. Goble, D.J., Cone, B.L., Fling, B.W.: Using the wii fit as a tool for balance assessment and neurorehabilitation: the first half decade of Wii-search. J. Neuroeng. Rehabil. 11(12), 0003–11 (2014)

    Google Scholar 

  17. Gonzalez, A., Fraisse, P., Hayashibe, M.: Adaptive interface for personalized center of mass self-identification in home rehabilitation. IEEE Sensors J. 15(5), 2814–2823 (2015)

    Google Scholar 

  18. GonzĂ¡lez, A., Hayashibe, M., Bonnet, V., Fraisse, P.: Whole body center of mass estimation with portable sensors: Using the statically equivalent serial chain and a kinect. Sensors 14(9), 16955–16971 (2014)

    Article  Google Scholar 

  19. GonzĂ¡lez, A., Hayashibe, M., Fraisse, P.: Estimation of the center of mass with Kinect and Wii Balance Board. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1023–1028. IEEE (2012)

    Google Scholar 

  20. Hansen, C., Venture, G., Rezzoug, N., Gorce, P., Isableu, B.: An individual and dynamic body segment inertial parameter validation method using ground reaction forces. J. Biomech. 47(7), 1577–1581 (2014)

    Article  Google Scholar 

  21. Jaffrey, M.A.: Estimating centre of mass trajectory and subject-specific body segment parameters using optimisation approaches. PhD thesis, Victoria University (2008)

    Google Scholar 

  22. Jiang, D., Xu, Z., Lv, Z.: A multicast delivery approach with minimum energy consumption for wireless multi-hop networks. Telecommun. Syst., 1–12 (2015)

    Google Scholar 

  23. Jiang, D., Ying, X., Han, Y., Lv, Z.: Collaborative multi-hop routing in cognitive wireless networks.Wireless Pers. Commun., 1–23 (2015)

    Google Scholar 

  24. Kiernan, D., Walsh, M., O’Sullivan, R., O’Brien, T., Simms, C.: The influence of estimated body segment parameters on predicted joint kinetics during diplegic cerebral palsy gait. J. Biomech. 47(1), 284–288 (2014)

    Article  Google Scholar 

  25. Kyle, U.G., Genton, L., Hans, D., Karsegard, V.L., Michel, J.-P., Slosman, D.O., Pichard, C.: Total body mass, fat mass, fat-free mass, and skeletal muscle in older people: cross-sectional differences in 60-year-old persons. J. Am. Geriatr. Soc. 49(12), 1633–1640 (2001)

    Article  Google Scholar 

  26. Lafond, D., Duarte, M., Prince, F.: Comparison of three methods to estimate the center of mass during balance assessment. J. Biomech. 37(9), 1421–1426 (2004)

    Article  Google Scholar 

  27. Li, T., Zhou, X., Brandstatter, K., Zhao, D., Wang, K., Rajendran, A., Zhang, Z., Raicu, I.: ZHT: a light-weight reliable persistent dynamic scalable zero-hop distributed hash table. In: 2013 IEEE 27th International Symposium on Parallel & Distributed Processing (IPDPS), pp. 775–787. IEEE (2013)

    Google Scholar 

  28. Liu, Y., Yang, J., Meng, Q., Lv, Z., Song, Z., Gao, Z.: Stereoscopic image quality assessment method based on binocular combination saliency model. Sig. Process. 125, 237–248 (2016)

    Article  Google Scholar 

  29. Lv, Z.: Bringing immersive enjoyment to hyperbaric oxygen chamber users using virtual reality glasses. In: Proceedings of the 3rd 2015 Workshop on ICTs for Improving Patients Rehabilitation Research Techniques, pp. 156–159. ACM (2015)

    Google Scholar 

  30. Lv, Z., Chirivella, J., Gagliardo, P.: Bigdata oriented multimedia mobile health applications. J. Med. Syst. 40(5), 1–10 (2016)

    Article  Google Scholar 

  31. Lv, Z., Esteve, C., Chirivella, J., Gagliardo, P.: Clinical feedback and technology selection of game based dysphonic rehabilitation tool. In 9th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth2015). IEEE (2015)

    Google Scholar 

  32. Lv, Z., Esteve, C., Chirivella, J., Gagliardo, P.: A game based assistive tool for rehabilitation of dysphonic patients. In: 2015 3rd IEEE VR International Workshop on Virtual and Augmented Assistive Technology (VAAT), pp. 9–14, March 2015

    Google Scholar 

  33. Lv, Z., Esteve, C., Chirivella, J., Gagliardo, P.: Serious game based dysphonic rehabilitation tool. In: International Conference on Virtual Rehabilitation (ICVR2015). IEEE (2015)

    Google Scholar 

  34. Lv, Z., Feng, L., Li, H., Feng, S.: Hand-free motion interaction on Google glass. In: SIGGRAPH Asia 2014 Mobile Graphics and Interactive Applications. ACM (2014)

    Google Scholar 

  35. Lv, Z., Feng, S., Feng, L., Li, H.: Extending touch-less interaction on vision based wearable device. In: 2015 IEEE Virtual Reality (VR), pp. 231–232, March 2015

    Google Scholar 

  36. Lv, Z., Feng, S., Khan, M.S.L., Ur Réhman, S., Li, H.: Foot motion sensing: augmented game interface based on foot interaction for smartphone. In: CHI 2014 Extended Abstracts on Human Factors in Computing Systems, pp. 293–296. ACM (2014)

    Google Scholar 

  37. Lv, Z., Halawani, A., Feng, S., Ur Réhman, S.: Multimodal hand and foot gesture interaction for handheld devices. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 11(1s), 1–19 (2014)

    Article  Google Scholar 

  38. Lv, Z., Halawani, A., Feng, S., Ur Réhman, S., Li, H.: Touch-less interactive augmented reality game on vision-based wearable device. Pers. Ubiquit. Comput. 19(3–4), 551–567 (2015)

    Article  Google Scholar 

  39. Lv, Z., Li, H.: Imagining in-air interaction for Hemiplegia sufferer. In: International Conference on Virtual Rehabilitation (ICVR2015). IEEE (2015)

    Google Scholar 

  40. Lv, Z., Penades, V., Blasco, S., Chirivella, J., Gagliardo, P.: Comparing Kinect2 based balance measurement software to Wii Balance Board. In: Proceedings of the 3rd 2015 Workshop on ICTs for improving Patients Rehabilitation Research Techniques, pp. 50–53. ACM (2015)

    Google Scholar 

  41. Lv, Z., Penades, V., Blasco, S., Chirivella, J., Gagliardo, P.: Intuitive evaluation of Kinect2 based balance measurement software. In: Proceedings of the 3rd 2015 Workshop on ICTs for improving Patients Rehabilitation Research Techniques, pp. 62–65. ACM (2015)

    Google Scholar 

  42. Lv, Z., Tek, A., Da Silva, F., Empereur-Mot, C., Chavent, M., Baaden, M.: Game on, science-how video game technology may help biologists tackle visualization challenges. PLoS One 8(3), 57990 (2013)

    Article  Google Scholar 

  43. Matrangola, S.L., Madigan, M.L., Nussbaum, M.A., Ross, R., Davy, K.P.: Changes in body segment inertial parameters of obese individuals with weight loss. J. Biomech. 41(15), 3278–3281 (2008)

    Article  Google Scholar 

  44. Nguyen, T.C., Reynolds, K.J.: The effect of variability in body segment parameters on joint moment using Monte Carlo Simulations. Gait Posture 39(1), 346–353 (2014)

    Article  Google Scholar 

  45. Pavol, M.J., Owings, T.M., Grabiner, M.D.: Body segment inertial parameter estimation for the general population of older adults. J. Biomech. 35(5), 707–712 (2002)

    Article  Google Scholar 

  46. Pearsall, D., Costigan, P.: The effect of segment parameter error on gait analysis results. Gait Posture 9(3), 173–183 (1999)

    Article  Google Scholar 

  47. Pryce, R., Kriellaars, D.: Body segment inertial parameters and low back load in individuals with central adiposity. J. Biomech. 47(12), 3080–3086 (2014)

    Article  Google Scholar 

  48. Rao, G., Amarantini, D., Berton, E., Favier, D.: Influence of body segments’ parameters estimation models on inverse dynamics solutions during gait. J. Biomech. 39(8), 1531–1536 (2006)

    Article  Google Scholar 

  49. Khan, M.S.L., Lu, Z., Li, H., et al.: Head orientation modeling: geometric head pose estimation using monocular camera. In: The 1st IEEE/IIAE International Conference on Intelligent Systems and Image Processing 2013, pp. 149–153 (2013)

    Google Scholar 

  50. Trefethen, N.: New BMI (body mass index) (2013). https://people.maths.ox.ac.uk/trefethen/bmi.html

  51. Wang, K., Zhou, X., Chen, H., Lang, M., Raicu, I.: Next generation job management systems for extreme-scale ensemble computing. In: Proceedings of the 23rd International Symposium on High-Performance Parallel and Distributed Computing, pp. 111–114. ACM (2014)

    Google Scholar 

  52. Wicke, J., Dumas, G.A., Costigan, P.A.: A comparison between a new model and current models for estimating trunk segment inertial parameters. J. Biomech. 42(1), 55–60 (2009)

    Article  Google Scholar 

  53. Wikstrom, E.A.: Validity and reliability of nintendo Wii Fit Balance Scores. J. Athletic Training 47(3), 306 (2012)

    Article  Google Scholar 

  54. Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley, New York (2009)

    Book  Google Scholar 

  55. Yang, J., Chen, B., Zhou, J., Lv, Z.: A low-power and portable biomedical device for respiratory monitoring with a stable power source. Sensors 15(8), 19618–19632 (2015)

    Article  Google Scholar 

  56. Yang, J., Lin, Y., Gao, Z., Lv, Z., Wei, W., Song, H.: Quality index for stereoscopic images by separately evaluating adding and subtracting. PLoS One 10(12), e0145800 (2015)

    Article  Google Scholar 

  57. Yu, J., Skaff, S., Peng, L., Imai, F.: Leveraging knowledge-based inference for material classification. In: Proceedings of the 23rd Annual ACM Conference on Multimedia Conference, pp. 1243–1246. ACM (2015)

    Google Scholar 

  58. Zatsiorsky, V., Seluyanov, V., Chugunova, L.: Methods of determining mass-inertial characteristics of human body segments. Contemp. Problems Biomech. 272, 291 (1990)

    Google Scholar 

Download references

Acknowledgment

The authors thank to LanPercept, a Marie Curie Initial Training Network funded through the 7th EU Framework Programme (316748).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihan Lv .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lv, Z., Penades, V., Blasco, S., Chirivella, J., Gagliardo, P. (2017). Using Wii Balance Board to Evaluate Software Based on Kinect2. In: Fardoun, H., R. Penichet, V., Alghazzawi, D., De la Guia, M. (eds) ICTs for Improving Patients Rehabilitation Research Techniques. REHAB 2015. Communications in Computer and Information Science, vol 665. Springer, Cham. https://doi.org/10.1007/978-3-319-69694-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69694-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69693-5

  • Online ISBN: 978-3-319-69694-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics