Skip to main content

Intuitively Evaluating Balance Measurement Software Using Kinect2

  • Conference paper
  • First Online:
ICTs for Improving Patients Rehabilitation Research Techniques (REHAB 2015)

Abstract

A balance measurement software based on Kinect2 sensor is evaluated by comparing to golden standard balance measure platform intuitively. The software analysis the tracked body data from the user by Kinect2 sensor and get user’s center of mass (CoM) as well as its motion route on a plane. The software is evaluated by several comparison tests, the evaluation results preliminarily prove the reliability of the software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akbaba, Y.A., Yeldan, I., Guney, N., Ozdincler, A.R.: Intensive supervision of rehabilitation programme improves balance and functionality in the short term after bilateral total knee arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, pp. 1–8 (2014)

    Google Scholar 

  2. Anson, E., Kiemel, T., Jeka, J., et al.: Visual feedback during treadmill walking improves balance for older adults: a preliminary report. In: 2013 International Conference on Virtual Rehabilitation (ICVR), pp. 166–167. IEEE (2013)

    Google Scholar 

  3. Biskupski, A., Fender, A.R., Feuchtner, T.M., Karsten, M., Willaredt, J.D.: Drunken ed: a balance game for public large screen displays. In: CHI 2014 Extended Abstracts on Human Factors in Computing Systems, pp. 289–292. ACM (2014)

    Google Scholar 

  4. Brassard, S., Otis, M.J.-D., Poirier, A., Menelas, B.-A.J.: Towards an automatic version of the berg balance scale test through a serious game. In: Proceedings of the Second ACM Workshop on Mobile Systems, Applications, and Services for Healthcare, p. 5. ACM (2012)

    Google Scholar 

  5. Chen, Z., Huang, W., Lv, Z.: Towards a face recognition method based on uncorrelated discriminant sparse preserving projection. Multimedia Tools Appl., 1–15 (2015)

    Google Scholar 

  6. Cikajlo, I., Oblak, J., Matjacic, Z.: Haptic floor for virtual balance training. In: 2011 IEEE World Haptics Conference (WHC), pp. 179–184. IEEE (2011)

    Google Scholar 

  7. Cikajlo, I., Rudolf, M., Goljar, N., Matjacic, Z.: Virtual reality task for telerehabilitation dynamic balance training in stroke subjects. In: Virtual Rehabilitation International Conference, pp. 121–125. IEEE (2009)

    Google Scholar 

  8. Dang, S., Ju, J., Matthews, D., Feng, X., Zuo, C.: Efficient solar power heating system based on lenticular condensation. In: 2014 International Conference on Information Science, Electronics and Electrical Engineering (ISEEE), vol. 2, pp. 736–739, April 2014

    Google Scholar 

  9. Duh, H.B.-L., Parker, D.E., Furness, T.A.: An “independent visual background” reduced balance disturbance envoked by visual scene motion: implication for alleviating simulator sickness. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 85–89. ACM (2001)

    Google Scholar 

  10. Ferrazzoli, D., Bera, R., Maestri, R., Perini, G., Spina, L., Gargantini, R., Pezzoli, G., Frazzitta, G.: Measuring the effectiveness of an intensive rehabilitation treatment on balance parameters in patients with parkinson’s disease through a stabilometric platform. In: Jensen, W., Andersen, O., Akay, M. (eds.) Replace, Repair, Restore, Relieve – Bridging Clinical and Engineering Solutions in Neurorehabilitation. Biosystems & Biorobotics, vol. 7, pp. 369–372. Springer, Cham (2014)

    Google Scholar 

  11. Funaya, H., Shibata, T., Wada, Y., Yamanaka, T.: Accuracy assessment of Kinect body tracker in instant posturography for balance disorders. In: 2013 7th International Symposium on Medical Information and Communication Technology (ISMICT), pp. 213–217. IEEE (2013)

    Google Scholar 

  12. Garrido, J.E., Marset, I., Penichet, V.M., Lozano, M.D.: Balance disorder rehabilitation through movement interaction. In: Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare, pp. 319–322 (2013)

    Google Scholar 

  13. Gil-Gómez, J.-A., Gil-Gómez, H., Lozano-Quilis, J.-A., Manzano-Hernández, P., Albiol-Pérez, S., Aula-Valero, C.: SEQ: suitability evaluation questionnaire for virtual rehabilitation systems. Application in a virtual rehabilitation system for balance rehabilitation. In: Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare, pp. 335–338 (2013)

    Google Scholar 

  14. Hardy, S., Kern, A., Dutz, T., Weber, C., Göbel, S., Steinmetz, R.: What makes games challenging?: Considerations on how to determine the challenge posed by an exergame for balance training. In: Proceedings of the 2014 ACM International Workshop on Serious Games, pp. 57–62. ACM (2014)

    Google Scholar 

  15. Jacobson, J., Redfern, M.S., Furman, J.M., Whitney, S.L., Sparto, P.J., Wilson, J.B., Hodges, L.F.: Balance nave: a virtual reality facility for research and rehabilitation of balance disorders. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 103–109. ACM (2001)

    Google Scholar 

  16. Jaume-i Capo, A., Martinez-Bueso, P., Moya-Alcover, B., Varona, J.: Interactive rehabilitation system for improvement of balance therapies in people with cerebral palsy. IEEE Trans. Neural Syst. Rehabil. Eng. 22(2), 419–427 (2014)

    Article  Google Scholar 

  17. Jiang, D., Xu, Z., Lv, Z.: A multicast delivery approach with minimum energy consumption for wireless multi-hop networks. Telecommun. Syst., 1–12 (2015)

    Google Scholar 

  18. Jiang, D., Ying, X., Han, Y., Lv, Z.: Collaborative multi-hop routing in cognitive wireless networks. Wireless Pers. Commun., 1–23 (2015)

    Google Scholar 

  19. Leo, K., Tan, B.: User-tracking mobile floor projection virtual reality game system for paediatric gait & dynamic balance training. In: Proceedings of the 4th International Convention on Rehabilitation Engineering & Assistive Technology, p. 25 (2010)

    Google Scholar 

  20. Liu, Y., Yang, J., Meng, Q., Lv, Z., Song, Z., Gao, Z.: Stereoscopic image quality assessment method based on binocular combination saliency model. Sig. Process. 125, 237–248 (2016)

    Article  Google Scholar 

  21. Luu, B.L., Huryn, T.P., Van der Loos, H., Croft, E.A., Blouin, J.: Validation of a robotic balance system for investigations in the control of human standing balance. IEEE Trans. Neural Syst. Rehabil. Eng. 19(4), 382–390 (2011)

    Article  Google Scholar 

  22. Lv, Z.: Bringing immersive enjoyment to hyperbaric oxygen chamber users using virtual reality glasses. In: Proceedings of the 3rd 2015 Workshop on ICTs for improving Patients Rehabilitation Research Techniques, pp. 156–159. ACM (2015)

    Google Scholar 

  23. Lv, Z., Chirivella, J., Gagliardo, P.: Bigdata oriented multimedia mobile health applications. J. Med. Syst. 40(5), 1–10 (2016)

    Article  Google Scholar 

  24. Lv, Z., Esteve, C., Chirivella, J., Gagliardo, P.: Clinical feedback and technology selection of game based dysphonic rehabilitation tool. In: 9th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth2015). IEEE (2015)

    Google Scholar 

  25. Lv, Z., Esteve, C., Chirivella, J., Gagliardo, P.: A game based assistive tool for rehabilitation of dysphonic patients. In: 2015 3rd IEEE VR International Workshop on Virtual and Augmented Assistive Technology (VAAT), pp. 9–14, March 2015

    Google Scholar 

  26. Lv, Z., Esteve, C., Chirivella, J., Gagliardo, P.: Serious game based dysphonic rehabilitation tool. In: International Conference on Virtual Rehabilitation (ICVR2015). IEEE (2015)

    Google Scholar 

  27. Lv, Z., Feng, L., Li, H., Feng, S.: Hand-free motion interaction on Google glass. In: SIGGRAPH Asia 2014 Mobile Graphics and Interactive Applications. ACM (2014)

    Google Scholar 

  28. Lv, Z., Feng, S., Feng, L., Li, H.: Extending touch-less interaction on vision based wearable device. In: 2015 IEEE Virtual Reality (VR), pp. 231–232, March 2015

    Google Scholar 

  29. Lv, Z., Feng, S., Khan, M.S.L., Ur Réhman, S., Li, H.: Foot motion sensing: augmented game interface based on foot interaction for smartphone. In: CHI 2014 Extended Abstracts on Human Factors in Computing Systems, pp. 293–296. ACM (2014)

    Google Scholar 

  30. Lv, Z., Halawani, A., Feng, S., Li, H., Ur Réhman, S.: Multimodal hand and foot gesture interaction for handheld devices. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 11(1s), 1–19 (2014)

    Article  Google Scholar 

  31. Lv, Z., Halawani, A., Feng, S., Ur Réhman, S., Li, H.: Touch-less interactive augmented reality game on vision-based wearable device. Pers. Ubiquit. Comput. 19(3–4), 551–567 (2015)

    Article  Google Scholar 

  32. Lv, Z., Li, H.: Imagining in-air interaction for hemiplegia sufferer. In: International Conference on Virtual Rehabilitation (ICVR2015). IEEE (2015)

    Google Scholar 

  33. Lv, Z., Penades, V., Blasco, S., Chirivella, J., Gagliardo, P.: Comparing Kinect2 based balance measurement software to Wii Balance Board. In: Proceedings of the 3rd 2015 Workshop on ICTs for Improving Patients Rehabilitation Research Techniques, pp. 50–53. ACM (2015)

    Google Scholar 

  34. Lv, Z., Penades, V., Blasco, S., Chirivella, J., Gagliardo, P.: Intuitive evaluation of Kinect2 based balance measurement software. In; Proceedings of the 3rd 2015 Workshop on ICTs for Improving Patients Rehabilitation Research Techniques, pp. 62–65. ACM (2015)

    Google Scholar 

  35. Lv, Z., Tek, A., Da Silva, F., Empereur-Mot, C., Chavent, M., Baaden, M.: Game on, science-how video game technology may help biologists tackle visualization challenges. PloS One 8(3), 57990 (2013)

    Article  Google Scholar 

  36. Muñoz, J.E., Chavarriaga, R., Lopez, D.S.: Application of hybrid BCI and exergames for balance rehabilitation after stroke. In: Proceedings of the 11th Conference on Advances in Computer Entertainment Technology, p. 67. ACM (2014)

    Google Scholar 

  37. Oddsson, L.I., Konrad, J., Williams, S.R., Karlsson, R., Ince, S.: A rehabilitation tool for functional balance using altered gravity and virtual reality. In: 2006 International Workshop on Virtual Rehabilitation, pp. 193–196. IEEE

    Google Scholar 

  38. Pisan, Y., Marin, J.G., Navarro, K.F.: Improving lives: using Microsoft Kinect to predict the loss of balance for elderly users under cognitive load. In: Proceedings of The 9th Australasian Conference on Interactive Entertainment: Matters of Life and Death, p. 29. ACM (2013)

    Google Scholar 

  39. Ramachandran, R., Ramanna, L., Ghasemzadeh, H., Pradhan, G., Jafari, R., Prabhakaran, B.: Body sensor networks to evaluate standing balance: interpreting muscular activities based on inertial sensors. In: Proceedings of the 2nd International Workshop on Systems and Networking Support for Health Care and Assisted Living Environments, p. 4. ACM (2008)

    Google Scholar 

  40. Schouten, A.C., Boonstra, T.A., Nieuwenhuis, F., Campfens, S., van der Kooij, H.: A bilateral ankle manipulator to investigate human balance control. IEEE Trans. Neural Syst. Rehabil. Eng. 19(6), 660–669 (2011)

    Article  Google Scholar 

  41. Khan, M.S.L., Lu, Z., Li, H., et al.: Head orientation modeling: Geometric head pose estimation using monocular camera. In: The 1st IEEE/IIAE International Conference on Intelligent Systems and Image Processing 2013, pp. 149–153 (2013)

    Google Scholar 

  42. Wang, G., Tao, Y., Yu, D., Cao, C., Chen, H., Yao, C.: Trainer: a motion-based interactive game for balance rehabilitation training. In: Proceedings of the Adjunct Publication of the 27th Annual ACM Symposium on User Interface Software and Technology, pp. 75–76. ACM (2014)

    Google Scholar 

  43. Wang, Y., Su, Y., Agrawal, G.: A novel approach for approximate aggregations over arrays. In: Proceedings of the 27th International Conference on Scientific and Statistical Database Management, p. 4. ACM (2015)

    Google Scholar 

  44. Wang, Y.-C., Huang, C.-K., Lee, W.-K., Hsu, Y.-P., Chen, L.-Y., Guo, H.-Y., Chang, Y.C., Wong, C.-L., Chiou, S.-C., Chang, J.-L., et al.: The convenient balance evaluation system. In: 2014 International Conference on Information Science, Electronics and Electrical Engineering (ISEEE), vol. 2, pp. 914–917. IEEE (2014)

    Google Scholar 

  45. Yang, J., Chen, B., Zhou, J., Lv, Z.: A low-power and portable biomedical device for respiratory monitoring with a stable power source. Sensors 15(8), 19618–19632 (2015)

    Article  Google Scholar 

  46. Yang, J., Lin, Y., Gao, Z., Lv, Z., Wei, W., Song, H.: Quality index for stereoscopic images by separately evaluating adding and subtracting. PloS One 10(12), e0145800 (2015)

    Article  Google Scholar 

  47. Yu, J., Skaff, S., Peng, L., Imai, F.: Leveraging knowledge-based inference for material classification. In: Proceedings of the 23rd Annual ACM Conference on Multimedia Conference, pp. 1243–1246. ACM (2015)

    Google Scholar 

  48. Yu, S., Ou, W., You, X., Mou, Y., Jiang, X., Tang, Y.: Single image rain streaks removal based on self-learning and structured sparse representation. In: 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), pp. 215–219. IEEE (2015)

    Google Scholar 

  49. Yu, S., You, X., Zhao, K., Ou, W., Tang, Y.: Kernel normalized mixed-norm algorithm for system identification, pp. 1–6 (2015)

    Google Scholar 

  50. Zhang, S., Caragea, D., Ou, X.: An empirical study on using the national vulnerability database to predict software vulnerabilities. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011. LNCS, vol. 6860, pp. 217–231. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23088-2_15

    Chapter  Google Scholar 

  51. Zhao, D., Zhang, Z., Zhou, X., Li, T., Wang, K., Kimpe, D., Carns, P., Ross, R., Raicu, I.: Fusionfs: toward supporting data-intensive scientific applications on extreme-scale high-performance computing systems. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 61–70. IEEE (2014)

    Google Scholar 

Download references

Acknowledgment

The work is supported by LanPercept, a Marie Curie ITN funded through the 7th EU Framework Programme (316748).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihan Lv .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lv, Z., Penades, V., Blasco, S., Chirivella, J., Gagliardo, P. (2017). Intuitively Evaluating Balance Measurement Software Using Kinect2. In: Fardoun, H., R. Penichet, V., Alghazzawi, D., De la Guia, M. (eds) ICTs for Improving Patients Rehabilitation Research Techniques. REHAB 2015. Communications in Computer and Information Science, vol 665. Springer, Cham. https://doi.org/10.1007/978-3-319-69694-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69694-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69693-5

  • Online ISBN: 978-3-319-69694-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics