Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 674))

Abstract

Through this position paper we aim at providing a prototype cognitive security service for anomaly detection in Software Defined Networks (SDNs). We equally look at strengthening attack detection capabilities in SDNs, through the addition of predictive analytics capabilities. For this purpose, we build a learning-based anomaly detection service called Learn2Defend, based on functionalities provided by Opendaylight. A potential path to cognition is detailed, by means of a Gaussian Processes driven engine that makes use of traffic characteristics/behavior profiles e.g. smoothness of the frequency of flows traversing a given node. Learn2Defend follows a two-fold approach, with unsupervised learning and prediction mechanisms, all in an on-line dynamic SDN context. The prototype does not target to provide an universally valid predictive analytics framework for security, but rather to offer a tool that supports the integration of cognitive techniques in the SDN security services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Shaer, E., Al-Haj, S.: Flowchecker: configuration analysis and verification of federated openflow infrastructures. In: Sager, T., Ahn, G.-J., Kant, K., Lipford, H.R. (eds.) SafeConfig, pp. 37–44. ACM (2010)

    Google Scholar 

  2. Bishop, C.M.: Pattern recognition and machine learning. In: Information science and statistics. Springer, New York (2006)

    Google Scholar 

  3. Bishop, C.M., Nasrabadi, N.M.: Pattern recognition and machine learning. J. Electron. Imaging 16(4), 049901 (2007)

    Article  Google Scholar 

  4. Braga, R., Mota, E., Passito, A.: Lightweight ddos flooding attack detection using nox/openflow. In: IEEE 35th Conference on Local Computer Networks (LCN), 2010, pp. 408–415, Oct 2010

    Google Scholar 

  5. Debar, H., Dacier, M., Wespi, A.: Towards a taxonomy of intrusion-detection systems. Comput. Netw. 31(8), 805–822 (1999)

    Article  Google Scholar 

  6. Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. 13(2), 222–232 (1987)

    Article  Google Scholar 

  7. Erickson, D.: The beacon OpenFlow controller. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, HotSDN 2013, pp. 13–18. ACM, New York (2013)

    Google Scholar 

  8. Floodlight project. http://www.projectfloodlight.org

  9. Genton, M.G.: Classes of kernels for machine learning: a statistics perspective. J. Mach. Learn. Res. 2, 299–312 (2002)

    MATH  MathSciNet  Google Scholar 

  10. Giotis, K., Argyropoulos, C., Androulidakis, G., Kalogeras, D., Maglaris, V.: Combining openflow and sflow for an effective and scalable anomaly detection and mitigation mechanism on sdn environments. Comput. Netw. 62, 122–136 (2014)

    Article  Google Scholar 

  11. Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., Shenker, S.: Nox: towards an operating system for networks. SIGCOMM Comput. Commun. Rev. 38(3), 105–110 (2008)

    Article  Google Scholar 

  12. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  13. Hand, R., Ton, M., Keller, E.: Active security. In: Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks, HotNets-XII, pp. 17:1–17:7. ACM, New York (2013)

    Google Scholar 

  14. Kreutz, D., Ramos, F.M.V., Veríssimo, P.J.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)

    Article  Google Scholar 

  15. Krishnan, R., Krishnaswamy, D., Mcdysan, D.: Behavioral security threat detection strategies for data center switches and routers. In: IEEE 34th International Conference on Distributed Computing Systems Workshops (ICDCSW), 2014, pp. 82–87, June 2014

    Google Scholar 

  16. Kukliński, S., Wytrebowicz, J., Dinh, K.T., Tantar, E.: Application of cognitive techniques to network management and control. In: Tantar, A.-A., et al. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V, pp. 79–93. Springer, Cham (2014)

    Google Scholar 

  17. Matsumoto, S., Hitz, S., Perrig, A.: Fleet: defending sdns from malicious administrators. In: Proceedings of the Third Workshop on Hot Topics in Software Defined Networking, HotSDN 2014, pp. 103–108. ACM, New York (2014)

    Google Scholar 

  18. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., Turner, J.: OpenFlow: enabling innovation in campus networks. In: Proceedings of the ACM SIGCOMM 2008 conference, vol. 38(2), pp. 69–74 (2008)

    Google Scholar 

  19. Mehdi, S.A., Khalid, J., Khayam, S.A.: Revisiting traffic anomaly detection using software defined networking. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) Recent Advances in Intrusion Detection. Lecture Notes in Computer Science, vol. 6961, pp. 161–180. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Neal, R.M.: Bayesian Learning for Neural Networks. Springer, New York (1996)

    Book  MATH  Google Scholar 

  21. OpenDaylight project, 01 May 2015. http://www.opendaylight.org

  22. POX controller. http://www.noxrepo.org/pox/about-pox

  23. Radware. Defense4All, User Guide (2014) https://wiki.opendaylight.org/view/Defense4All:Main

  24. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). MIT Press, Cambridge (2005)

    Google Scholar 

  25. Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M., McKeown, N., Parulkar, G.: FlowVisor: A Network Virtualization Layer. Technical report , Deutsche Telekom Inc. R&D Lab, Stanford, Nicira Networks (2009)

    Google Scholar 

  26. Sommer, R., Paxson, V.: Outside the closed world: On using machine learning for network intrusion detection. In: IEEE Symposium on Security and Privacy (SP), 2010, pp. 305–316, May 2010

    Google Scholar 

  27. Tantar, E., Palattella, M.R., Avanesov, T., Kantor, M., Engel, T.: Cognition: a tool for reinforcing security in software defined networks. In: Tantar, A.-A., et al. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V, Advances in Intelligent Systems and Computing, vol. 288, pp. 61–78. Springer, Cham (2014)

    Google Scholar 

  28. Yang, L., Dantu, R., Anderson, T.A., Gopal, R.: Forwarding and Control Element Separation (ForCES) Framework, RFC 3746. The Internet Engineering Task Force, April 2004

    Google Scholar 

Download references

Acknowledgment

This publication is based in parts on work performed in the framework of the IDSECOM project, INTER/POLLUX/ 13/6450335, and CoSDN project, INTER/POLLUX/12/4434480, both funded by the Fonds National de la Recherche, Luxembourg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Tantar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tantar, E., Tantar, AA., Kantor, M., Engel, T. (2018). On Using Cognition for Anomaly Detection in SDN. In: Tantar, AA., Tantar, E., Emmerich, M., Legrand, P., Alboaie, L., Luchian, H. (eds) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation VI. Advances in Intelligent Systems and Computing, vol 674. Springer, Cham. https://doi.org/10.1007/978-3-319-69710-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69710-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69708-6

  • Online ISBN: 978-3-319-69710-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics