Abstract
The use of ontologies to ease planning and execution of clinical trials and the handling of the resulting data has been proposed in various forms over the past years ranging from dedicated ontologies to ontology-driven software.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Apache Software Foundation: Lucene. https://lucene.apache.org
Brochhausen, M., Weiler, G., Cocos, C., et al.: The ACGT master ontology on cancer - a new terminol. source for oncolog. Practice. In: Proceedings of IEEE Symposium on Computer-Based Medical Systems (2008)
CDISC Consortium: Operational Data Model (ODM). https://www.cdisc.org/odm
DCMI: Dublin Core Meta. Elem. Set. http://dublincore.org/documents/dces
Doods, J., Neuhaus, P., Dugas, M.: Converting ODM metadata to FHIR questionnaire resources. Stud. Health Technol. Inform. 228, 456–460 (2016)
Gearon, P., et al.: SPARQL Update. https://www.w3.org/TR/sparql11-update
Leroux, H., Metke-Jimenez, A., Lawley, M.: ODM on FHIR: towards achieving semantic interoperability of clinical study data. In: Proceedings of SWAT4LS (2015)
National Cancer Institute: NCI Thesaurus. https://ncit.nci.nih.gov
Sanfilippo, E., Schwarz, U., Schneider, L.: The health data ontology trunk (HDOT) - towards an ontolog. represent. of cancer-related knowledge. In: Proceedings of IARWISOCI (2012)
SNOMED International: SNOMED CT. http://www.snomed.org/snomed-ct
Stenzhorn, H., Weiler, G., Brochhausen, M., Schera, F., Kritsotakis, V., et al.: The ObTiMA system - ontology-based managing of clinical trials. In: Proceedings of Medinfo (2010)
FHIR IS WG. FHIR RDF Representation. https://www.hl7.org/fhir/rdf.html
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Stenzhorn, H. (2017). A Simple Tool to Enrich Clinical Trial Data with Multiontology-Based Conceptual Tags. In: Da Silveira, M., Pruski, C., Schneider, R. (eds) Data Integration in the Life Sciences. DILS 2017. Lecture Notes in Computer Science(), vol 10649. Springer, Cham. https://doi.org/10.1007/978-3-319-69751-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-69751-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69750-5
Online ISBN: 978-3-319-69751-2
eBook Packages: Computer ScienceComputer Science (R0)