Abstract
Medical engineering (ME) is an interdisciplinary domain with short innovation cycles. Usually, researchers from several fields cooperate in ME research projects. To support the identification of suitable partners for a project, we present an integrated approach for patent classification combining ideas from topic modeling, ontology modeling & matching, bibliometric analysis, and data integration. First evaluation results show that the use of semantic technologies in patent classification can indeed increase the quality of the results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
References
Awasthi, A., Adetiloye, T., Crainic, T.G.: Collaboration partner selection for city logistics planning under municipal freight regulations. Appl. Math. Model. 40(1), 510–525 (2016)
Balog, K., De Rijke, M.: Determining expert profiles (with an application to expert finding). IJCAI 7, 2657–2662 (2007)
Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)
Blei, D.M., Lafferty, J.D.: A correlated topic model of science. Ann. Appl. Stat. 1(1), 17–35 (2007)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Bonino, D., Ciaramella, A., Corno, F.: Review of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informatics. World Patent Inf. 32(1), 30–38 (2010)
BVMed. Branchenbericht Medizintechnologien, June 2015. www.bvmed.de/branchenbericht
Cruz, I.F., Antonelli, F.P., Stroe, C.: Agreementmaker: efficient matching for large real-world schemas and ontologies. PVLDB 2(2), 1586–1589 (2009)
Deutsche Gesellschaft für Biomed. Technik im VDE. Empfehlungen zur Verbesserung der Innovationsrahmenbedingungen für Hochtechnologie-Medizin. Technical report, VDE (2012)
Faria, D., Pesquita, C., Santos, E., Cruz, I.F., Couto, F.M.: Agreement maker light results for oaei 2013. In: Proceedings of 8th International Conference on Ontology Matching, pp. 101–108. CEUR-WS.org (2013)
Geisler, S., Hai, R., Quix, C.: An ontology-based collaboration recommender system using patents. In: Proceedings of International Conference on Knowledge Engineering and Ontology Development, pp. 389–394 (2015)
Hai, R., Geisler, S., Quix, C.: Constance: an intelligent data lake system. In: Proceedings SIGMOD, pp. 2097–2100, San Francisco (2016)
Hornik, K., Grün, B.: Topicmodels: an r package for fitting topic models. J. Stat. Softw. 40(13), 1–30 (2011)
Meyer, D., Hornik, K., Feinerer, I.: Text mining infrastructure in r. J. Stat. Softw. 25(5), 1–54 (2008)
Mogee, M.E., Kolar, R.G.: Patent co-citation analysis of eli lilly & co. patents. Expert Opin. Ther. Pat. 9(3), 291–305 (1999)
Portenoy, J., West, J.D.: Visualizing scholarly publications and citations to enhance author profiles. In: Proceedings of 26th International Conference on World Wide Web (WWW), pp. 1279–1282, Perth (2017)
Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
Rafiei, M., Kardan, A.A.: A novel method for expert finding in online communities based on concept map and pagerank. Hum. Centric Comput. Inf. Sci. 5(1), 1–18 (2015)
Rani, S.K., Raju, K.V.S.V.N., Kumari, V.V.: Expert finding system using latent effort ranking in academic social networks. Int. J. Inf. Technol. Comput. Sci. 2, 21–27 (2015)
Schlötelburg, C., Weiß, C., Hahn, P., Becks, T., Mühlbacher, A.C.: Identifizierung von Innovationshürden in der Medizintechnik. Technical report, Bundesministeriums für Bildung und Forschung, October 2008
Steyvers, M., Griffiths, T.: Probabilistic topic models. In: Landauer, T.K., McNamara, D.S., Dennis, S., Kintsch, W. (eds.) Handbook of Latent Semantic Analysis, vol. 427, pp. 424–440. Lawrence Erlbaum Associates Inc. (2007)
Mari Carmen Suárez-Figueroa. NeOn Methodology for building ontology networks: specification, scheduling and reuse. PhD thesis, Univ. Politecnica de Madrid (2010)
Tang, J., Wang, B., Yang, Y., Hu, P., Zhao, Y., Yan, X., Gao, B., Huang, M., Xu, P., Li, W., et al.: Patentminer: topic-driven patent analysis and mining. In: Proceedings 18th ACM SIGKDD, pp. 1366–1374. ACM (2012)
Trappey, A.J.C., Trappey, C.V., Hsu, F.C., Hsiao, D.W.: A fuzzy ontological knowledge document clustering methodology. IEEE Trans. Syst. Man Cybern. Part B 39(3), 806–814 (2009)
Tseng, Y.-H., Lin, C.-J., Lin, Y.-I.: Text mining techniques for patent analysis. Inf. Proces. Manag. 43(5), 1216–1247 (2007)
Wang, G.A., Jiao, J., Abrahams, A.S., Fan, W., Zhang, Z.: Expertrank: a topic-aware expert finding algorithm for online knowledge communities. Decis. Support Syst. 54(3), 1442–1451 (2013)
Wanner, L., et al.: Towards content-oriented patent document processing. World Patent Inf. 30(1), 21–33 (2008)
Chong, W., Barnes, D.: A literature review of decision-making models and approaches for partner selection in agile supply chains. Purchasing Supply Manag. 17(4), 256–274 (2011)
Yimam-Seid, D., Kobsa, A.: Expert-finding systems for organizations: problem and domain analysis and the demoir approach. J. Organ. Comput. Electron. Commer. 13(1), 1–24 (2003)
Yoon, B., Park, Y.: A text-mining-based patent network: analytical tool for high-technology trend. J. High Technol. Manag. Res. 15(1), 37–50 (2004)
Zhang, L., Li, L., Li, T.: Patent mining: a survey. ACM SIGKDD Explor. Newslett. 16(2), 1–19 (2015)
Acknowledgements
This work has been supported by the Klaus Tschira Stiftung gGmbH in the context of the mi-Mappa project (http://www.dbis.rwth-aachen.de/mi-Mappa/, project no. 00.263.2015). We thank our project partners from the Institute of Applied Medical Engineering at the Helmholtz Institute of RWTH Aachen University & Hospital, especially Dr. Robert Farkas, for the fruitful discussions about the approach and for providing the patent data.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Geisler, S., Quix, C., Hai, R., Alekh, S. (2017). An Integrated Ontology-Based Approach for Patent Classification in Medical Engineering. In: Da Silveira, M., Pruski, C., Schneider, R. (eds) Data Integration in the Life Sciences. DILS 2017. Lecture Notes in Computer Science(), vol 10649. Springer, Cham. https://doi.org/10.1007/978-3-319-69751-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-69751-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69750-5
Online ISBN: 978-3-319-69751-2
eBook Packages: Computer ScienceComputer Science (R0)