Skip to main content

A Fast Semi-Automatic Segmentation Tool for Processing Brain Tumor Images

  • Conference paper
  • First Online:
Towards Integrative Machine Learning and Knowledge Extraction

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10344))

Abstract

Segmentation, the process of delineating boundaries and features within images, is a vital part of both the clinical assessment and the computational analysis of brain cancers. Here, we provide an open-source algorithm (MITKats), built on the Medical Imaging Interaction Toolkit, to provide user-friendly and expedient tools for semi-automatic segmentation. To evaluate its performance against competing algorithms, we applied MITKats to MRIs of 38 high-grade glioma cases from publicly available benchmarks. The similarity of the segmentations to expert-delineated ground truths approached the discrepancies among different manual raters, the theoretically maximal precision. The average time spent on each segmentation was 5 min, making MITKats between 4 and 11 times faster than competing semi-automatic algorithms, while retaining similar accuracy. We conclude with remarks on the utility of segmentation for medical data analysis as well as its further challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeAngelis, L.M.: Brain tumors. New Engl. J. Med. 344(2), 114–123 (2001)

    Article  Google Scholar 

  2. Mabray, M.C., Barajas, R.F., Cha, S.: Modern brain tumor imaging. Brain Tumor Res. Treat. 3(1), 8–23 (2015)

    Article  Google Scholar 

  3. Dupont, C., Betrouni, N., Reyns, N., Vermandel, M.: On image segmentation methods applied to glioblastoma: state of art and new trends. IRBM 1(3), 1–13 (2016)

    Google Scholar 

  4. Bauer, S., Lu, H., May, C.P., Nolte, L.P., Büchler, P., Reyes, M.: Integrated segmentation of brain tumor images for radiotherapy and neurosurgery. Int. J. Imaging Syst. Technol. 23(1), 59–63 (2013)

    Article  Google Scholar 

  5. Kickingereder, P., Burth, S., Wick, A., et al.: Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 280(3), 880–889 (2016)

    Article  Google Scholar 

  6. Cui, Y., Tha, K.K., Terasaka, S., Yamaguchi, S., Wang, J., Kudo, K., Xing, L., Shirato, H., Li, R.: Prognostic imaging biomarkers in glioblastoma: development and independent validation on the basis of multiregion and quantitative analysis of MR images. Radiology 287, 546–553 (2015)

    Google Scholar 

  7. Chow, D.S., Qi, J., Guo, X., Miloushev, V.Z., Iwamoto, F.M., Bruce, J.N., Lassman, A.B., Schwartz, L.H., Lignelli, A., Zhao, B., Filippi, C.G.: Semiautomated volumetric measurement on postcontrast MR imaging for analysis of recurrent and residual disease in glioblastoma multiforme. Am. J. Neuroradiol. 35(3), 498–503 (2014)

    Article  Google Scholar 

  8. Clarke, L.P., Velthuizen, R.P., Clark, M., Gaviria, J., Hall, L., Goldgof, D., Murtagh, R., Phuphanich, S., Brem, S.: MRI measurement of brain tumor response: comparison of visual metric and automatic segmentation. Magn. Reson. Imaging 16(3), 271–279 (1998)

    Article  Google Scholar 

  9. Yang, D., Rao, G., Martinez, J., Veeraraghavan, A., Rao, A.: Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med. Phys. 42(11), 6725 (2015)

    Article  Google Scholar 

  10. Hu, L.S., Ning, S., Eschbacher, J.M., et al.: Radiogenomics to characterize regional genetic heterogeneity in glioblastoma. Neuro Oncol. 19, 135 (2016)

    Google Scholar 

  11. Kickingereder, P., Bonekamp, D., Nowosielski, M., et al.: Radiogenomics of glioblastoma: machine learning based classification of molecular characteristics by using multiparametric and mutiregional MR imaging features. Radiology 281, 907–918 (2016)

    Article  Google Scholar 

  12. Czarnek, N., Clark, K., Peters, K.B., Mazurowski, M.A.: Algorithmic three-dimensional analysis of tumor shape in MRI improves prognosis of survival in glioblastoma: a multi-institutional study. J. Neuro Oncol. 132(1), 55–62 (2017)

    Article  Google Scholar 

  13. Mazurowski, M.A., Zhang, J., Peters, K.B., Hobbs, H.: Computer-extracted MR imaging features are associated with survival in glioblastoma patients. J. Neuro Oncol. 120(3), 483–488 (2014)

    Article  Google Scholar 

  14. Itakura, H., Achrol, A.S., et al.: Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Sci. Transl. Med. 7(303), 303ra138 (2015)

    Google Scholar 

  15. Jeanquartier, F., Jean-Quartier, C., Kotlyar, M., Tokar, T., Hauschild, A.C., Jurisica, I., Holzinger, A.: Machine Learning for In Silico Modeling of Tumor Growth BT - Machine Learning for Health Informatics: State-of-the-Art and Future Challenges, pp. 415–434. Springer International Publishing, Cham (2016)

    Google Scholar 

  16. Macyszyn, L., Akbari, H., Pisapia, J.M., Da, X., Attiah, M., et al.: Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro Oncol. 18(3), 417–425 (2016)

    Article  Google Scholar 

  17. Jeanquartier, F., Jean-Quartier, C., Schreck, T., Cemernek, D., Holzinger, A.: Integrating open data on cancer in support to tumor growth analysis. In: Renda, M.E., Bursa, M., Holzinger, A., Khuri, S. (eds.) ITBAM 2016. LNCS, vol. 9832, pp. 49–66. Springer, Cham (2016). doi:10.1007/978-3-319-43949-5_4

    Chapter  Google Scholar 

  18. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., Prior, F.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  19. Porz, N., Bauer, S., Pica, A., Schucht, P., Beck, J., Verma, R.K., Slotboom, J., Reyes, M., Wiest, R.: Multi-modal glioblastoma segmentation: man versus machine. PLoS ONE 9(5), 1–9 (2014)

    Article  Google Scholar 

  20. Kaus, M.R., Warfield, S.K., Nabavi, A., Black, P.M., Jolesz, F.A., Kikinis, R.: Automated segmentation of MR images of brain tumors. Radiology 218(2), 586–591 (2001)

    Article  Google Scholar 

  21. Bauer, S., Wiest, R., Nolte, L.P., Reyes, M.: A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), R97–R129 (2013)

    Article  Google Scholar 

  22. Wang, J., Liu, T.: A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci. Technol. 19(6), 578–595 (2014)

    Article  MathSciNet  Google Scholar 

  23. Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  24. Gordillo, N., Montseny, E., Sobrevilla, P.: State of the art survey on MRI brain tumor segmentation. Magn. Reson. Imaging 31(8), 1426–1438 (2013)

    Article  Google Scholar 

  25. Fyllingen, E.H., Stensjoen, A.L., Berntsen, E.M., Solheim, O., Reinertsen, I.: Glioblastoma segmentation: comparison of three different software packages. PLoS ONE 11(10), e0164891 (2016)

    Article  Google Scholar 

  26. Ramkumar, A., Dolz, J., Kirisli, H.A., et al.: User interaction in semi-automatic segmentation of organs at risk: a case study in radiotherapy. J. Digit. Imaging 29(2), 264–277 (2016)

    Article  Google Scholar 

  27. Wolf, I., Vetter, M., Wegner, I., Bottger, T., Nolden, M., Schobinger, M., Hastenteufel, M., Kunert, T., Meinzer, H.P.: The medical imaging interaction toolkit. Med. Image Anal. 9(6), 594–604 (2005)

    Article  Google Scholar 

  28. Maleike, D., Nolden, M., Meinzer, H.P., Wolf, I.: Interactive segmentation framework of the Medical Imaging Interaction Toolkit. Comput. Methods Prog. Biomed. 96(1), 72–83 (2009)

    Article  Google Scholar 

  29. Goebel, R., Esposito, F., Formisano, E.: Analysis of functional image analysis contest (FIAC) data with BrainVoyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum. Brain Mapp. 27(5), 392–401 (2006)

    Article  Google Scholar 

  30. Egger, J., Kapur, T., Fedorov, A., Pieper, S., Miller, J.V., Veeraraghavan, H., Freisleben, B., Golby, A.J., Nimsky, C., Kikinis, R.: GBM volumetry using the 3D Slicer medical image computing platform. Sci. Rep. 3, 1364 (2013)

    Article  Google Scholar 

  31. Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  32. Crawford, L., Monod, A., Chen, A.X., Mukherjee, S., Rabadán, R.: Topological Summaries of Tumor Images Improve Prediction of Disease Free Survival in Glioblastoma Multiforme. Arxiv pre-print (Nov)

    Google Scholar 

  33. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  34. Huang, R.Y., Neagu, M.R., Reardon, D.A., Wen, P.Y.: Pitfalls in the neuroimaging of glioblastoma in the era of antiangiogenic and immuno/targeted therapy - detecting illusive disease, defining response. Front. Neurol. 6, 1–16 (2015)

    Article  Google Scholar 

  35. Akkus, Z., Sedlar, J., Coufalova, L., Korfiatis, P., Kline, T.L., Warner, J.D., Agrawal, J., Erickson, B.J.: Semi-automated segmentation of pre-operative low grade gliomas in magnetic resonance imaging. Cancer Imaging 15(1), 1–10 (2015)

    Article  Google Scholar 

  36. Upadhaya, T., Morvan, Y., Stindel, E., Le Reste, P.J., Hatt, M.: Prognosis classification in glioblastoma multiforme using multimodal MRI derived heterogeneity textural features: impact of pre-processing choices, vol. 9785, 97850W, March 2016

    Google Scholar 

  37. Jeanquartier, F., Jean-Quartier, C., Cemernek, D., Holzinger, A.: In silico modeling for tumor growth visualization. BMC Syst. Biol. 10(1), 59 (2016)

    Article  Google Scholar 

  38. Jean-Quartier, C., Jeanquartier, F., Cemernek, D., Holzinger, A.: Tumor growth simulation profiling. In: Renda, M.E., Bursa, M., Holzinger, A., Khuri, S. (eds.) ITBAM 2016. LNCS, vol. 9832, pp. 208–213. Springer, Cham (2016). doi:10.1007/978-3-319-43949-5_16

    Chapter  Google Scholar 

  39. Cooper, L.A.D., Kong, J., Gutman, D.A., Wang, F., Gao, J., Appin, C., Cholleti, S., Pan, T., Sharma, A., Scarpace, L., Mikkelsen, T., Kurc, T., Moreno, C.S., Brat, D.J., Saltz, J.H.: Integrated morphologic analysis for the identification and characterization of disease subtypes. J. Am. Med. Inf. Assoc. JAMIA 19(2), 317–323 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Anthea Monod and the rest of the Rabadan lab for their helpful comments and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Rabadán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, A.X., Rabadán, R. (2017). A Fast Semi-Automatic Segmentation Tool for Processing Brain Tumor Images. In: Holzinger, A., Goebel, R., Ferri, M., Palade, V. (eds) Towards Integrative Machine Learning and Knowledge Extraction. Lecture Notes in Computer Science(), vol 10344. Springer, Cham. https://doi.org/10.1007/978-3-319-69775-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69775-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69774-1

  • Online ISBN: 978-3-319-69775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics