Abstract
In domestic area, demand of an electricity has been growing with the increase of energy consumed by appliances. So, there must be a mechanism for scheduling the appliances and reducing a power consumption in Home Energy Management System (HEMS). In this regard, we integrate two heuristic techniques Genetic Algorithm (GA) and Biography Based Optimization (BBO) in HEMS by using smart grid. Our discussion and simulations results clearly shows the effect on cost minimization, peak to average reduction and load reduction from on-peak to off- peak hours. We have used a Critical Peak Pricing (CPP) model for electricity bill calculation. Both GA and BBO outperforms for the reduction of cost Peak to Average Ratio (PAR) and load, by achieving user comfort maximization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rahim, S., Javaid, N., Ahmad, A., Khan, S.A., Khan, Z.A., Alrajeh, N., Qasim, U.: Exploiting heuristic algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy Build. 129, 452–470 (2016)
Shakeri, M., Shayestegan, M., Abunima, H., Reza, S.S., Akhtaruzzaman, M., Alamoud, A.R.M., Sopian, K., Amin, N.: An intelligent system architecture in home energy management systems (HEMS) for efficient demand response in smart grid. Energy Build. 138, 154–164 (2017)
Ahmed, M.S., Mohamed, A., Khatib, T., Shareef, H., Homod, R.Z., Ali, J.A.: Real time optimal schedule controller for home energy management system using new binary backtracking search algorithm. Energy Build. 138, 215–227 (2017)
Javaid, N., Javaid, S., Abdul, W., Ahmed, I., Almogren, A., Alamri, A., Niaz, I.A.: A hybrid genetic wind driven heuristic optimization algorithm for demand side management in smart grid. Energies 10(3), 319 (2017)
Mišák, S., Stuchlý, J., Platoš, J., Krömer, P.: A heuristic approach to Active Demand Side Management in Off-Grid systems operated in a Smart-Grid environment. Energy Build. 96, 272–284 (2015)
Jalali, M.M., Kazemi, A.: Demand side management in a smart grid with multiple electricity suppliers. Energy 81, 766–776 (2015)
Vergados, D.J., Mamounakis, I., Makris, P., Varvarigos, E.: Prosumer clustering into virtual microgrids for cost reduction in renewable energy trading markets. Sustain. Energ. Grids Netw. 7, 90–103 (2016)
Ma, K., Yao, T., Yang, J., Guan, X.: Residential power scheduling for demand response in smart grid. Int. J. Electr. Power Energy Syst. 78, 320–325 (2016). Vancouver
Zhao, Z., Lee, W.C., Shin, Y., Song, K.B.: An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 4(3), 1391–1400 (2013)
Zhu, Z., Tang, J., Lambotharan, S., Chin, W.H., Fan, Z.: An integer linear programming based optimization for home demand-side management in smart grid. In: Innovative Smart Grid Technologies (ISGT), 2012 IEEE PES, pp. 1–5. IEEE, January 2012
Samadi, P., Wong, V.W., Schober, R.: Load scheduling and power trading in systems with high penetration of renewable energy resources. IEEE Trans. Smart Grid 7(4), 1802–1812 (2016)
Ceseña, E.M., Mancarella, P.: Practical recursive algorithms and flexible open-source applications for planning of smart distribution networks with demand response. Sustain. Energy Grids Netw. 7, 104–116 (2016)
Xiong, G., Shi, D., Duan, X.: Enhancing the performance of biogeography-based optimization using polyphyletic migration operator and orthogonal learning. Comput. Oper. Res. 41, 125–139 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Ambreen, K. et al. (2018). Implementing Critical Peak Pricing in Home Energy Management Using Biography Based Optimization and Genetic Algorithm in Smart Grid. In: Barolli, L., Xhafa, F., Conesa, J. (eds) Advances on Broad-Band Wireless Computing, Communication and Applications. BWCCA 2017. Lecture Notes on Data Engineering and Communications Technologies, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-69811-3_50
Download citation
DOI: https://doi.org/10.1007/978-3-319-69811-3_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69810-6
Online ISBN: 978-3-319-69811-3
eBook Packages: EngineeringEngineering (R0)