Abstract
Energy crises are serious issues due to exponential increase in demand of energy. To tackle the issue of increase in demand, an integration of traditional grid with Demand Side Management (DSM). As need to resolve energy crises issues in residential areas smart homes are introduced; contains Smart Meters (SM), which allows bidirectional communication between utilities and end users. Different heuristic techniques are used to overcome these issues. The energy management is more necessary in residential area as there is verity of different appliances and power rates to schedule. The heuristics techniques provide most optimal solution. The purpose of our implementation is to reduce the total cost and Peak to Average Ratio (PAR) value and while keeping in mind the trade-off with waiting time up to an acceptable limit.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhu, Z., Tang, J., Lambotharan, S., Chin, W.H., Fan, Z.: An integer linear programming based optimization for home demand-side management in smart grid. In: 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), pp. 1–5. IEEE, January 2012
Samadi, P., Wong, V.W., Schober, R.: Load scheduling and power trading in systems with high penetration of renewable energy resources. IEEE Trans. Smart Grid 7(4), 1802–1812 (2016)
Zhao, Z., Lee, W.C., Shin, Y., Song, K.B.: An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 4(3), 1391–1400 (2013)
Javaid, N., Javaid, S., Abdul, W., Ahmed, I., Almogren, A., Alamri, A., Niaz, I.A.: A hybrid genetic wind driven heuristic optimization algorithm for demand side management in smart grid. Energies 10(3), 319 (2017)
Ma, K., Yao, T., Yang, J., Guan, X.: Residential power scheduling for demand response in smart grid. Int. J. Electr. Power Ener. Syst. 78, 320–325 (2016)
Rahim, S., Javaid, N., Ahmad, A., Khan, S.A., Khan, Z.A., Alrajeh, N., Qasim, U.: Exploiting heuristic algorithms to efficiently utilize energy management controllers with renewable energy sources. Ener. Buildings 129, 452–470 (2016)
Shakouri, H., Kazemi, A.: Multi-objective cost-load optimization for demand side management of a residential area in smart grids. Sustain. Cities Soc. 32, 171–180 (2017)
Huang, Y., Wang, L., Guo, W., Kang, Q., Wu, Q.: Chance constrained optimization in a home energy management system. IEEE Trans. Smart Grid (2017)
Bharathi, C., Rekha, D., Vijayakumar, V.: Genetic algorithm based demand side management for smart grid. Wirel. Pers. Commun. 93(2), 481–502 (2017)
Anvari-Moghaddam, A., Monsef, H., Rahimi-Kian, A.: Optimal smart home energy management considering energy saving and a comfortable lifestyle. IEEE Trans. Smart Grid 6(1), 324–332 (2015)
Roh, H.-T., Lee, J.-W.: Residential Demand Response Scheduling With Multiclass Appliances in the Smart Grid. IEEE Trans. Smart Grid TSG.2015.2445491. IEEE
Basit, A., Sidhu, G.A.S., Mahmood, A., Gao, F.: Efficient and autonomous energy management techniques for the future smart homes. IEEE Trans. Smart Grid (2015)
Tsai, H.C., Lin, Y.H.: Modification of the fish swarm algorithm with particle swarm optimization formulation and communication behavior. Appl. Soft Comput. 11(8), 5367–5374 (2011)
Rocha, A., Costa, M., Fernandes, E.: An artificial fish swarm filter-based method for constrained global optimization. In: Computational Science and Its Applications ICCSA 2012, pp. 57–71 (2012)
Lobato, F.S., Steffen, V.: Fish swarm optimization algorithm applied to engineering system design. Latin Am. J. Solid. Struct. 11(1), 143–156 (2014)
Khalid, A., Javaid, N., Mateen, A., Khalid, B., Khan, Z. A., Qasim, U.: Demand side management using hybrid bacterial foraging and genetic algorithm optimization techniques. In: 2016 10th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS), pp. 494–502. IEEE, July 2016
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Ali, S. et al. (2018). Home Energy Management Using Fish Swarm Optimization Bacterial Foraging Algorithm and Genetic Algorithm in Smart Grid. In: Barolli, L., Xhafa, F., Conesa, J. (eds) Advances on Broad-Band Wireless Computing, Communication and Applications. BWCCA 2017. Lecture Notes on Data Engineering and Communications Technologies, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-69811-3_51
Download citation
DOI: https://doi.org/10.1007/978-3-319-69811-3_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69810-6
Online ISBN: 978-3-319-69811-3
eBook Packages: EngineeringEngineering (R0)