Skip to main content

Enhanced Differential Evolution and Crow Search Algorithm Based Home Energy Management in Smart Grid

  • Conference paper
  • First Online:
Advances on Broad-Band Wireless Computing, Communication and Applications (BWCCA 2017)

Abstract

In this paper, we used two techniques: Enhanced Differential Evolution (EDE) and Crow Search Algorithm (CSA), in order to evaluate the performance of Home Energy Management System (HEMS). The total load is categorized into three groups based on their energy consumption pattern, and time of use of appliances. Critical Peak Pricing (CPP) scheme is used to calculate electricity bill. Our goals are electricity cost reduction, energy consumption minimization, Peak to Average Ratio (PAR) minimization, and user comfort maximization. However, there is trade-off between multiple objectives (goals). The simulation results show that, there is trade-off between PAR and total cost, and there is trade-off as well between PAR and waiting time. The simulation results also show that CSA performs better in terms of total cost and user comfort than EDE and unscheduled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rahim, S., Javaid, N., Ahmad, A., Khan, S.A., Khan, Z.A., Alrajeh, N., Qasim, U.: Exploiting heuristic algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy Build. 129, 452–470 (2016)

    Article  Google Scholar 

  2. Shakeri, M., Shayestegan, M., Abunima, H., Reza, S.M.S., Akhtaruzzaman, M., Alamoud, A.R.M., Sopian, K., Amin, N.: An intelligent system architecture in home energy management systems (HEMS) for efficient demand response in smart grid. Energy Build. 138, 154–164 (2017)

    Article  Google Scholar 

  3. Ahmed, M.S., Mohamed, A., Khatib, T., Shareef, H., Homod, R.Z., Ali, J.A.: Real time optimal schedule controller for home energy management system using new binary backtracking search algorithm. Energy Build. 138, 215–227 (2017)

    Article  Google Scholar 

  4. Anees, A., Chen, Y.-P.P.: True real time pricing and combined power scheduling of electric appliances in residential energy management system. Appl. Energy 165, 592–600 (2016)

    Article  Google Scholar 

  5. Shirazi, E., Jadid, S.: Cost reduction and peak shaving through domestic load shifting and DERs. Energy 124, 146–159 (2017)

    Article  Google Scholar 

  6. Rasheed, M.B., Javaid, N., Awais, M., Khan, Z.A., Qasim, U., Alrajeh, N., Iqbal, Z., Javaid, Q.: Real time information based energy management using customer preferences and dynamic pricing in smart homes. Energies 9(7), 542 (2016)

    Article  Google Scholar 

  7. Ogwumike, C., Short, M., Denai, M.: Near-optimal scheduling of residential smart home appliances using heuristic approach. In: 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 3128–3133. IEEE (2015)

    Google Scholar 

  8. Javaid, N., Javaid, S., Abdul, W., Ahmed, I., Almogren, A., Alamri, A., Niaz, I.A.: A hybrid genetic wind driven heuristic optimization algorithm for demand side management in smart grid. Energies 10(3), 319 (2017)

    Article  Google Scholar 

  9. Zhao, Z., Lee, W.C., Shin, Y., Song, K.-B.: An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 4(3), 1391–1400 (2013)

    Article  Google Scholar 

  10. Zhu, Z., Tang, J., Lambotharan, S., Chin, W.H., Fan, Z.: An integer linear programming based optimization for home demand-side management in smart grid. In: 2012 IEEE PES on Innovative Smart Grid Technologies (ISGT), pp. 1–5. IEEE (2012)

    Google Scholar 

  11. Ma, K., Yao, T., Yang, J., Guan, X.: Residential power scheduling for demand response in smart grid. International Journal of Electrical Power and Energy Systems 78, 320–325 (2016)

    Article  Google Scholar 

  12. Samadi, P., Wong, V.W.S., Schober, R.: Load scheduling and power trading in systems with high penetration of renewable energy resources. IEEE Trans. Smart Grid 7(4), 1802–1812 (2016)

    Article  Google Scholar 

  13. Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadeem Javaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pamir et al. (2018). Enhanced Differential Evolution and Crow Search Algorithm Based Home Energy Management in Smart Grid. In: Barolli, L., Xhafa, F., Conesa, J. (eds) Advances on Broad-Band Wireless Computing, Communication and Applications. BWCCA 2017. Lecture Notes on Data Engineering and Communications Technologies, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-69811-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69811-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69810-6

  • Online ISBN: 978-3-319-69811-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics