Abstract
We developed a new strategy for elucidation of functional impact of mutations in proteins. Using molecular dynamics simulations, we explore flexibility of proteins in the sites of their binding to the other proteins. Binding of two or more proteins go through the stage of intermediate binding complexes. On this stage the number of possible conformations of the proteins’ binding sites are interacting with each other. Increasing flexibility in the binding sites increase a probability of the best-energy docking of proteins. Our computational simulations demonstrated that a missense alteration of MET (p.Tyr501Cys), which lead to an increase of flexibility of the protein, may improve the binding of the receptor with its ligand HGF (hepatocyte growth factor) and thus be considered as activating. Accordingly to this conclusion, a patient presenting a hepatocellular carcinoma MET Y501C-mutated showed a good response when treated by a potent MET inhibitor (cabozantinib), with a decrease of −65% of the alpha-foeto-protein (AFP).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bamford, S., Dawson, E., Forbes, S., Clements, J., Pettett, R., Dogan, A., Flanagan, A., Teague, J., Futreal, P.A., Stratton, M.R., Wooster, R.: The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br. J. Cancer 91(2), 355–358 (2004)
Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984)
Bozic, I., Antal, T., Ohtsuki, H., Carter, H., Kim, D., Chen, S., Karchin, R., Kinzler, K.W., Vogelstein, B., Nowak, M.A.: Accumulation of driver and passenger mutations during tumor progression. Proc. Natl. Acad. Sci. U.S.A. 107(43), 18545–18550 (2010)
Case, D.A., Babin, V., Berriman, J.T., et al.: AMBER 14. University of California, San Francisco (2014)
Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993)
Di Renzo, M.F., Narsimhan, R.P., Olivero, M., Bretti, S., Giordano, S., Medico, E., Gaglia, P., Zara, P., Comoglio, P.M.: Expression of the Met/HGF receptor in normal and neoplastic human tissues. Oncogene 6(11), 1997–2003 (1991)
Dykeman, E.C., Twarock, R.: All-atom normal-mode analysis reveals an RNA-induced allostery in a bacteriophage coat protein. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(3 Pt. 1), 031908 (2010)
Forbes, S.A., Beare, D., Bindal, N., Bamford, S., Ward, S., Cole, C.G., Jia, M., Kok, C., Boutselakis, H., De, T., Sondka, Z., Ponting, L., Stefancsik, R., Harsha, B., Tate, J., Dawson, E., Thompson, S., Jubb, H., Campbell, P.J.: COSMIC: high-resolution cancer genetics using the catalogue of somatic mutations in cancer. Curr. Protoc. Hum. Genet. 91, 10.11.1–10.11.37 (2016)
Gherardi, E., Youles, M.E., Miguel, R.N., Blundell, T.L., Iamele, L., Gough, J., Bandyopadhyay, A., Hartmann, G., Butler, P.J.G.: Functional map and domain structure of MET, the product of the c-Met protooncogene and receptor for hepatocyte growth factor/scatter factor. Proc. Natl. Acad. Sci. U.S.A. 100(21), 12039–12044 (2003)
Götz, A.W., Williamson, M.J., Xu, D., Poole, D., Le Grand, S., Walker, R.C.: Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J. Chem. Theory Comput. 8, 1542–1555 (2012)
Hartmann, G., Naldini, L., Weidner, K.M., Sachs, M., Vigna, E., Comoglio, P.M., Birchmeier, W.: A functional domain in the heavy chain of scatter factor/hepatocyte growth factor binds the c-Met receptor and induces cell dissociation but not mitogenesis. Proc. Natl. Acad. Sci. U.S.A. 89, 11574–11578 (1992)
Huff, J.L., Jelinek, M.A., Borgman, C.A., Lansing, T.J., Parsons, J.T.: The protooncogene c-sea encodes a transmembrane proteintyrosine kinase related to the Met/hepatocyte growth factor/scatter factor receptor. Proc. Natl. Acad. Sci. U.S.A. 90, 6140–6144 (1993)
Joung, I.S., Cheatham III, T.E.: Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112, 9020–9041 (2008)
Jücker, M., Günther, A., Gradl, G., Fonatsch, C., Krueger, G., Diehl, V., Tesch, H.: The Met/hepatocyte growth factor receptor (HGFR) gene is overexpressed in some cases of human leukemia and lymphoma. Leuk. Res. 18(1), 7–16 (1994)
Kawakami, H., Okamoto, I., Okamoto, W., Tanizaki, J., Nakagawa, K., Nishio, K.: Targeting MET amplification as a new oncogenic driver. Cancers 6(3), 1540–1552 (2014)
Kurzrock, R., Giles, F.J.: Precision oncology for patients with advanced cancer: the challenges of malignant snowflakes. Cell Cycle (Georgetown, Tex.) 14(14), 2219–2221 (2015)
Levy, Y., Cho, S.S., Onuchic, J.N., Wolynes, P.G.: A survey of flexible protein binding mechanisms and their transition states using native topology based energy landscapes. J. Mol. Biol. 346(4), 1121–1145 (2005)
Liu, Q., Li, Z., Li, J.: Use B-factor related features for accurate classification between protein binding interfaces and crystal packing contacts. BMC Bioinform. 15(Suppl. 16), S3 (2014)
Loncharich, R.J., Brooks, B.R., Pastor, R.W.: Langevin dynamics of peptides: the frictional dependence of isomerization rates of N-acetylalanyl-N’-methylamide. Biopolymers 32, 523–535 (1992)
Montesano, R., Matsumoto, K., Nakamura, T., Orci, L.: Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67, 901–908 (1991)
Organ, S.L., Tsao, M.-S.: An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol. 3(Suppl. 1), S7–S19 (2011)
Panjkovich, A., Daura, X.: Exploiting protein flexibility to predict the location of allosteric sites. BMC Bioinform. 2012(13), 273 (2012)
Porollo, A., Meller, J.: Prediction-based fingerprints of protein-protein interactions. Proteins 66, 630–645 (2007)
Prat, M., Narsimhan, R.P., Crepaldi, T., Nicotra, M.R., Natali, P.G., Comoglio, P.M.: The receptor encoded by the human c-MET oncogene is expressed in hepatocytes, epithelial cells and solid tumors. Int. J. Cancer 49(3), 323–328 (1991)
Reva, B., Antipin, Y., Sander, C.: Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 39(17), e118 (2011)
Roe, D.R., Cheatham III, T.E.: PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095 (2013)
Ronsin, C., Muscatelli, F., Mattei, M.G., Breathnach, R.: A novel putative receptor protein tyrosine kinase of the met family. Oncogene 8, 1195–1202 (1993)
Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J.C.: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977)
Salomon-Ferrer, R., Case, D.A., Walker, R.C.: An overview of the Amber biomolecular simulation package. WIREs Comput. Mol. Sci. 3, 198–210 (2013)
Salomon-Ferrer, R., Götz, A.W., Poole, D., Le Grand, S., Walker, R.C.: Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 9, 3878–3888 (2013)
Santarpia, L., Bottai, G., Kelly, C.M., Győrffy, B., Székely, B., Pusztai, L.: Deciphering and targeting oncogenic mutations and pathways in breast cancer. Oncologist 21(9), 1063–1078 (2016)
Stamos, J., Lazarus, R.A., Yao, X., Kirchhofer, D., Wiesmann, C.: Crystal structure of the HGF beta-chain in complex with the Sema domain of the Met receptor. EMBO 23, 2325–2335 (2004)
Stoler, D.L., Chen, N., Basik, M., Kahlenberg, M.S., Rodriguez-Bigas, A., Petrelli, N.J., Anderson, G.R.: The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc. Natl. Acad. Sci. U.S.A. 96(26), 15121–15126 (1999)
Studer, R.A., Dessailly, B.H., Orengo, C.A.: Residue mutations and their impact on protein structure and function: detecting beneficial and pathogenic changes. Biochem. J. 449(3), 581–594 (2013)
Tomlinson, I., Sasieni, P., Bodmer, W.: How many mutations in a cancer? Am. J. Pathol. 160(3), 755–758 (2002)
Trusolino, L., Comoglio, P.M.: Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat. Rev. Cancer 2(4), 289–300 (2002)
Tsigelny, I.F., Wheler, J.J., Greenberg, J.P., Kouznetsova, V.L., Stewart, D.J., Bazhenova, L., Kurzrock, R.: Molecular determinants of drug-specific sensitivity for Epidermal Growth Factor Receptor (EGFR) exon 19 and 20 mutants in non-small cell lung cancer. Oncotarget 6, 6029–6039 (2015)
Tsigelny, I.F., Kurzrock, R., Skjevik, Å.A., Kouznetsova, V.L., Ikeda, S.: Molecular dynamics use in personalized cancer medicine: example of MET Y501C mutation. In: Proceedings of the 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, Lisbon, Portugal, 29–31 July 2016, pp. 71–74 (2016)
Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., Kinzler, K.W.: Cancer genome landscapes. Science 339(6127), 1546–1558 (2013)
Zenali, M., deKay, J., Liu, Z., Hamilton, S., Zuo, Z., Lu, X., Bakkar, R., Mills, G., Broaddus, R.: Retrospective review of MET gene mutations. Oncoscience 2(5), 533–541 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Tsigelny, I.F., Kurzrock, R., Skjevik, Å.A., Kouznetsova, V.L., Boichard, A., Ikeda, S. (2018). Proteins Flexibility as a Criterion for Elucidation of Activating Mutants in Personalized Cancer Medicine. In: Obaidat, M., Ören, T., Merkuryev, Y. (eds) Simulation and Modeling Methodologies, Technologies and Applications. SIMULTECH 2016. Advances in Intelligent Systems and Computing, vol 676. Springer, Cham. https://doi.org/10.1007/978-3-319-69832-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-69832-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69831-1
Online ISBN: 978-3-319-69832-8
eBook Packages: EngineeringEngineering (R0)