Skip to main content

Application of Logistic Regression for Background Substitution

  • Conference paper
  • First Online:
Multimedia Communications, Services and Security (MCSS 2017)

Abstract

The paper presents application of multinomial logistic regression for color segmentation. The common problem in the subject of image understanding is creation of a large enough corpus for algorithm training. Especially when a large set of classes has to be recognized or if using convolutional neural networks the size and diversity of the training set strongly influences the quality of the resulting system. We present a method of automated generation of training samples by combining a well-known green box technique with multinomial logistic regression for background substitution. We show the encountered problems and their solutions. We present numerous examples of algorithm performance in background substitution. We conclude the paper with presentation of other examples of application of logistic regression for image understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Authors have GLSL implementation achieving real time speed processing of full HD images on Samsung galaxy S III.

References

  1. Baran, R., Zeja, A.: The imcop system for data enrichment and content discovery and delivery. In: 2015 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 143–146, December 2015

    Google Scholar 

  2. Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)

    MATH  Google Scholar 

  3. Cheng, V., Kehtarnavaz, N.: A smart camera application: Dsp-based people detection and tracking. J. Electron. Imaging 9(3), 336–346 (2000). http://dx.doi.org/10.1117/1.482749

    Article  Google Scholar 

  4. Chmiel, W., Szwed, P.: Learning fuzzy cognitive map for traffic prediction using an evolutionary algorithm. In: Dziech, A., Leszczuk, M., Baran, R. (eds.) MCSS 2015. CCIS, vol. 566, pp. 195–209. Springer, Cham (2015). doi:10.1007/978-3-319-26404-2_16

    Chapter  Google Scholar 

  5. Cucchiara, R., Grana, C., Prati, A., Vezzani, R.: Probabilistic posture classification for human-behavior analysis. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 35(1), 42–54 (2005)

    Article  Google Scholar 

  6. Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000). doi:10.1007/3-540-45053-X_48

    Chapter  Google Scholar 

  7. Eshkol, A., Grega, M., Leszczuk, M., Weintraub, O.: Practical application of near duplicate detection for image database. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2014. CCIS, vol. 429, pp. 73–82. Springer, Cham (2014). doi:10.1007/978-3-319-07569-3_6

    Chapter  Google Scholar 

  8. Grega, M., Bryk, D., Napora, M.: Inact-indect advanced image cataloguing tool. Multimedia Tools Appl. 68(1), 95–110 (2014). http://dx.doi.org/10.1007/s11042-012-1164-3

    Article  Google Scholar 

  9. Haritaoglu, I., Harwood, D., Davis, L.S.: W4: real-time surveillance of people and their activities. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 809–830 (2000)

    Article  Google Scholar 

  10. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics, 2nd edn. Springer, New York (2009). https://books.google.pl/books?id=tVIjmNS3Ob8C

  11. Inaguma, T., Saji, H., Nakatani, H.: Hand motion tracking based on a constraint of three-dimensional continuity. J. Electron. Imaging 14(1), 013021-1–013021-9 (2005). http://dx.doi.org/10.1117/1.1867473

  12. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning: with Applications in R. Springer Texts in Statistics. Springer, New York (2014). https://books.google.pl/books?id=at1bmAEACAAJ

  13. KaewTraKulPong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Remagnino, P., Jones, G.A., Paragios, N., Regazzoni, C.S. (eds.) Video-Based Surveillance Systems, pp. 135–144. Springer US, Boston (2002). https://doi.org/10.1007/978-1-4615-0913-4_11

  14. Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real-time foreground-background segmentation using codebook model. Real-Time Imaging 11(3), 172–185 (2005). http://dx.doi.org/10.1016/j.rti.2004.12.004

    Article  Google Scholar 

  15. Leszczuk, M., Juszka, D., Janowski, L., Grega, M., Cruz, R., Nunes, M., Patrikakis, C., Papapanagiotou, S.: Quality aware, adaptive, 3D media distribution over P2P architectures. In: 2013 IEEE Globecom Workshops (GC Wkshps), pp. 1133–1138, December 2013

    Google Scholar 

  16. Makris, D., Ellis, T.: Learning semantic scene models from observing activity in visual surveillance. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 35(3), 397–408 (2005)

    Article  Google Scholar 

  17. MathWorks: Statistics and machine learning toolbox user’s guide. Technical report, MathWorks, Inc. (2015). http://www.mathworks.com/help/releases/R2015a/pdf_doc/stats/stats.pdf

  18. Mineiro, P.: fastapprox - fast approximate functions. https://code.google.com/archive/p/fastapprox/

  19. Neves, C.: Categorical Data Analysis, 3rd edn., p. 41 (2014)

    Google Scholar 

  20. Oliver, N.M., Rosario, B., Pentland, A.P.: A bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000)

    Article  Google Scholar 

  21. Rusek, K., Guzik, P.: Two-stage neural network regression of eye location in face images. Multimedia Tools Appl. 75(17), 10617–10630 (2016). https://doi.org/10.1007/s11042-014-2114-z

    Article  Google Scholar 

  22. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), vol. 2, p. 252 (1999)

    Google Scholar 

  23. Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19, 780–785 (1997)

    Article  Google Scholar 

  24. Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 28–31, August 2004

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Polish National Center for Research and Development under the LIDER Grant (No. LIDER/354/L-6/14/NCBR/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Grega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Grega, M. et al. (2017). Application of Logistic Regression for Background Substitution. In: Dziech, A., Czyżewski, A. (eds) Multimedia Communications, Services and Security. MCSS 2017. Communications in Computer and Information Science, vol 785. Springer, Cham. https://doi.org/10.1007/978-3-319-69911-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69911-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69910-3

  • Online ISBN: 978-3-319-69911-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics