Skip to main content

Truncated Nuclear Norm Based Low Rank Embedding

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10568))

Included in the following conference series:

Abstract

Dimensionality reduction, also called feature extraction, is an important issue in pattern recognition. However, many existing dimensionality reduction methods, such as principal component analysis, fail when there exist noises in data, especially for noise caused by outliers or corruption. Recently, a robust method, named low-rank embedding (LRE) is proposed, which uses the nuclear norm for characterizing the low rank structure hided in the data. However, one major limitation of the nuclear norm is that each singular value is treated equally, since the nuclear norm is defined as the sum of all singular values. Thus the rank function may not be well approximated in practice. To overcome this drawback, this paper presents a truncated nuclear norm based low rank embedding (Truncated-LRE). The truncated nuclear norm can approximate the rank function more accurately than nuclear norm. Experimental results show encouraging results of the proposed methods in comparison with the state-of-the-art matrix dimensionality reduction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002). doi:10.1007/b98835

    MATH  Google Scholar 

  2. Yang, J., Zhang, D., Yang, J.-Y.: Constructing PCA baseline algorithms to reevaluate ICA-based face-recognition performance. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(4), 1015–1021 (2007)

    Article  Google Scholar 

  3. Yang, J., Yang, J.-Y.: Why can LDA be performed in PCA transformed space? Pattern Recogn. 36(2), 563–566 (2003)

    Article  Google Scholar 

  4. Liwicki, S., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Euler principal component analysis. Int. J. Comput. Vis. 101(3), 498–518 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.-J.: Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)

    Article  Google Scholar 

  6. Wang, R., Nie, F., Hong, R., Chang, X., Yang, X., Yu, W.: Fast and orthogonal locality preserving projections for dimensionality reduction. IEEE Trans. Image Process. 26(10), 5019–5030 (2017)

    Article  MathSciNet  Google Scholar 

  7. Candès, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3), 1–37 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gao, Q., Ma, L., Liu, Y., Gao, X., Nie, F.: Angle 2DPCA: a new formulation for 2DPCA. IEEE Trans. Cybern. (2017). doi:10.1109/TCYB.2017.2712740

  9. Wong, W.K., Lai, Z., Wen, J., Fang, X., Lu, Y.: Low rank embedding for robust image feature extraction. IEEE Trans. Image Process. doi:10.1109/TIP.2017.2691543

  10. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)

    Article  Google Scholar 

  11. Candès, E., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Candès, E., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory 56(5), 2053–2080 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Keshavan, R., Montanari, A., Sewoong, O.: Matrix completion from a few entries. IEEE Trans. Inf. Theory 56(6), 2980–2998 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Srebro, N., Rennie, J., Jaakkola, T.: Maximum-margin matrix factorization. Adv. Neural. Inf. Process. Syst. 17, 1329–1336 (2004)

    Google Scholar 

  15. Nie, F., Wang, H., Cai, X., Huang, H., Ding, C.: Robust matrix completion via joint Schatten p-norm and lp-norm minimization. In: IEEE 12th International Conference on Data Mining (ICDM), pp. 566–574 (2012)

    Google Scholar 

  16. Hu, Y., Zhang, D., Ye, J., Li, X., He, X.: Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2117–2130 (2013)

    Article  Google Scholar 

  17. Wang, Q., Chen, F., Gao, Q., Gao, X., Nie, F.: On the schatten norm for matrix based subspace learning and classification. Neurocomputing 216, 192–199 (2016)

    Article  Google Scholar 

  18. Lin, Z., Chen, M., Wu, L., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. UIUC Technical report UILU-ENG-09-2215 (2009)

    Google Scholar 

  19. Cai, J., Candès, E., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Yang, J., Yin, W., Zhang, Y., Wang, Y.: A fast algorithm for edge preserving variational multichannel image restoration. SIAM J. Imaging Sci. 2(2), 569–592 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lee, K.C., Ho, J., Driegman, D.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the University Natural Science Fund of Jiangsu Province (Grant No. 16KJB520020), the National Key R&D Program (Grant No. 2017YFC0804002), the National Science Fund of China (Grant Nos. 61603192, 61772277, 61462064), and the Natural Science Fund of Jiangsu Province (Grant Nos. BK20161580, BK20171494).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanlong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhang, F., Chang, H., Yang, G., Yang, Z., Wan, M. (2017). Truncated Nuclear Norm Based Low Rank Embedding. In: Zhou, J., et al. Biometric Recognition. CCBR 2017. Lecture Notes in Computer Science(), vol 10568. Springer, Cham. https://doi.org/10.1007/978-3-319-69923-3_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69923-3_76

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69922-6

  • Online ISBN: 978-3-319-69923-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics