Skip to main content

Application of Ordered Fuzzy Decision Trees in Construction of Structure Function of Multi-State System

  • Conference paper
  • First Online:
Information and Communication Technologies in Education, Research, and Industrial Applications (ICTERI 2016)

Abstract

The structure function is typical mathematical representation of investigated system in reliability analysis. This function defines the correlation of all possible system components states and system performance level from point of view of the system reliability. The structure function is constructed based on complete information about the system structure and possible components states. However, there are a lot of practical problems when the complete information is not available because data from which it can be derived cannot be collected. In this paper, we propose a new method for construction of the structure function based on uncertain or incomplete initial data with application of ordered Fuzzy Decision Trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lisnianski, A., Levitin, G.: Multi-state System Reliability. Assessment, Optimization and Applications. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  2. Natvig, B.: Multistate Systems Reliability Theory with Applications. Wiley, New York (2011). doi:10.1002/9780470977088

    Book  MATH  Google Scholar 

  3. Aven, T.: Reliability evaluation of multistate systems with multistate components. IEEE Trans. Reliab. R-34, 473–479 (1985). doi:10.1109/TR.1985.5222235

    Article  MATH  Google Scholar 

  4. Kvassay, M., Zaitseva, E., Levashenko, V.: Minimal cut sets and direct partial logic derivatives in reliability analysis. In: Proceedings of the European Safety and Reliability Conference on Safety and Reliability: Methodology and Applications, pp. 241–248. CRC press, (2015). doi:10.1201/b17399-37

  5. Zaitseva, E., Levashenko, V.: Construction of a reliability structure function based on uncertain data. IEEE Trans. Reliab. 65, 1710–1723 (2016). doi:10.1109/TR.2016.2578948

    Article  Google Scholar 

  6. Zaitseva, E., Levashenko, V., Kvassay, M.: Application of structure function in system reliability analysis based on uncertain data. In: 12th International Conference on ICT in Education, Research and Industrial Applications: Integration, Harmonization and Knowledge Transfer, pp. 361–374, CEUR-WS (2016)

    Google Scholar 

  7. Levashenko, V., Zaitseva, E., Puuronen, S.: Fuzzy classified based on fuzzy decision tree. In: IEEE International Conference on Computer as a Tool (EUROCON 2007), pp. 823–827. IEEE Press (2007). doi:10.1109/EURCON.2007.4400614

  8. Levashenko, V.G., Zaitseva, E.N.: Usage of new information estimations for induction of fuzzy decision trees. In: Yin, H., Allinson, N., Freeman, R., Keane, J., Hubbard, S. (eds.) IDEAL 2002. LNCS, vol. 2412, pp. 493–499. Springer, Heidelberg (2002). doi:10.1007/3-540-45675-9_74

    Chapter  Google Scholar 

  9. Kuo, W., Zhu, X.: Importance Measures in Reliability, Risk, and Optimization: Principles and Applications. Wiley, Chichester (2012). doi:10.1002/9781118314593

    Book  Google Scholar 

  10. Aven, T., Zio, E., Baraldi, P., Flage, R.: Uncertainty in Risk Assessment: The Representation and Treatment of Uncertainties by Probabilistic and Non-Probabilistic Methods. Wiley (2014). doi:10.1002/9781118763032

  11. Cutello, V., Montero, J., Yanez, J.: Structure functions with fuzzy states. Fuzzy Sets Syst. 83, 189–202 (1996)

    Article  MathSciNet  Google Scholar 

  12. Stanton, N.A., Baber, C.: Error by design: methods for predicting device usability. Des. Stud. 23, 363–384 (2002). doi:10.1016/S0142-694X(01)00032-1

    Article  Google Scholar 

  13. Huang, H.-Z.: Structural reliability analysis using fuzzy sets theory. Eksploatacja i Niezawodnosc Maintenance Reliab. 14, 284–294 (2012)

    Google Scholar 

  14. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques. Elsevier, Burlington (2011)

    Google Scholar 

  15. Mitra, S., Konwar, K.M., Pal, S.K.: Fuzzy decision tree, linguistic rules and fuzzy knowledge-based network: generation and evaluation. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 32, 328–339 (2002). doi:10.1109/TSMCC.2002.806060

    Article  Google Scholar 

  16. Tsipouras, M.G., Exarchos, T.P., Fotiadis, D.I.: A methodology for automated fuzzy model generation. Fuzzy Sets Syst. 159, 3201–3220 (2008). doi:10.1016/j.fss.2008.04.004

    Article  MATH  MathSciNet  Google Scholar 

  17. Quinlan, J.R.: Simplifying decision trees. Int. J. Man Mach. Stud. 27, 221–234 (1987). doi:10.1023/A:1022643204877

    Article  Google Scholar 

  18. Kruse, R., Doring, Ch., Lesot, M.-J.: Fundamentals of fuzzy clustering. In: Valente de Oliveira, J., Pedrycz, W. (eds.) Advances in Fuzzy Clustering and its Applications. Wiley (2007). doi:10.1002/9780470061190.ch1

  19. Tanaka, H., Fan, L.T., Lai, F.S., Toguchi, K.: Fault-tree analysis by fuzzy probability. IEEE Trans. Reliab. R-32, 453–457 (1983). doi:10.1109/TR.1983.5221727

    Article  MATH  Google Scholar 

  20. Yuan, Y., Shaw, M.J.: Induction of fuzzy decision trees. Fuzzy Sets Syst. 69, 125–139 (1995). doi:10.1016/0165-0114(94)00229-Z

    Article  MathSciNet  Google Scholar 

  21. Lee, H.M., Chen, C.-M., et al.: An efficient fuzzy classifier with feature selection based on fuzzy entropy. IEEE Trans. Syst. Man Cyber Part B Cybern. 31, 426–432 (2001). doi:10.1109/3477.931536

    Article  Google Scholar 

  22. Shyrai, S., Viattchenin, D.: Clustering the intuitionistic fuzzy data: detection of an unknown number of intuitionistic fuzzy clusters in the allotment. In: International Conference on Information and Digital Technologies (IDT 2015), pp. 314–323. IEEE Press (2015). doi:10.1109/DT.2015.7222990

  23. Braga-Neto, U.M., Dougherty, E.R.: Exact correlation between actual and estimated errors in discrete classification. Pattern Recogn. Lett. 31, 407–412 (2010). doi:10.1016/j.patrec.2009.10.017

    Article  Google Scholar 

  24. Shortridge, J., Aven, T., Guikema, S.: Risk assessment under deep uncertainty: a methodological comparison. Reliab. Eng. Syst. Saf. 159, 12–23 (2017). doi:10.1016/j.ress.2016.10.017

    Article  Google Scholar 

  25. Baraldi, P., Podofillini, L., et al.: Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application. Reliab. Eng. Syst. Saf. 138, 176–193 (2015). doi:10.1016/j.ress.2015.01.016

    Article  Google Scholar 

  26. Dubois, D.: Representation, propagation, and decision issues in risk analysis under incomplete probabilistic information. Risk Anal. 30, 361–368 (2010). doi:10.1111/j.1539-6924.2010.01359.x

    Article  Google Scholar 

  27. Zaitseva, E., Levashenko, V., Kostolny, J., Kvassay, M.: A multi-valued decision diagram for estimation of multi-state system. In: IEEE EuroCon 2013, pp. 645–650. IEEE Press (2013). doi:10.1109/EUROCON.2013.6625049

  28. Zaitseva, E., Levashenko, V., Kostolny, J.: Multi-state system importance analysis based on direct partial logic derivative. In: 2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, pp. 1514–1519. IEEE Press (2012). doi:10.1109/ICQR2MSE.2012.6246513

Download references

Acknowledgment

This work is supported by the grant of Ministry of Education, Science, Research and Sport of the Slovak Republic VEGA 1/0038/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Zaitseva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zaitseva, E., Levashenko, V., Kvassay, M., Rabcan, J. (2017). Application of Ordered Fuzzy Decision Trees in Construction of Structure Function of Multi-State System. In: Ginige, A., et al. Information and Communication Technologies in Education, Research, and Industrial Applications. ICTERI 2016. Communications in Computer and Information Science, vol 783. Springer, Cham. https://doi.org/10.1007/978-3-319-69965-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69965-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69964-6

  • Online ISBN: 978-3-319-69965-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics