Abstract
The DengueViz is a knowledge-based expert system integrated with parallel coordinates as its visualization technique to diagnose dengue. The dengue diagnosis results includes the dengue classifications and their probability according to the interactions of users with the system. The knowledge base of this system consists of 140 rules for the classification of dengue. The integration of parallel coordinates visually presents the large amount of dengue information into a single visualization, where data interactions such as the selection of axes, filtering and highlighting reduces the clutter for it to be more comprehensible and enhances the correlation between the attributes of the information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
World Health Organization (WHO). http://www.who.int
The Star: 50% rise in dengue deaths (2016). http://www.thestar.com.my/news/nation/2016/01/06/50-rise-in-dengue-deaths-health-ministry-upward-trend-also-observed-in-other-countries
Arbee, A.: Dengue cases to spike between June and August: Health Ministry. (2016). https://www.nst.com.my/news/2016/04/137488/dengue-cases-spike-between-june-and-august-health-ministry
World Health Organization (WHO): Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control. Geneva (1997)
Desai, M.N., Kartikeyn, B., Dahiya, V.: Applications of expert system in medical field. J. Expert Syst. 2, 150–152 (2015)
Darai, D.S., Singh, S., Biswas, S.: Knowledge Engineering-an overview. Int. J. Comput. Sci. Inf. Technol. 1, 230–234 (2010)
Sharma, T., Tiwari, N., Kelkar, D.: Study of difference between forward and backward reasoning. Int. J. Emerg. Technol. Adv. Eng. 2, 1–3 (2012)
Shortliffe, E.H.: Mycin: a knowledge-based computer program applied to infectious diseases. In: Proceedings of the Annual Symposium on Computer Application in Medical Care, pp. 66–69. PubMed Central, California (1977)
Srikiatkhachorn, A., Rothman, A.L., Gibbons, R.V., Sittisombut, N., Malasit, P., Ennis, F.A., Nimmannitya, S., Kalayanarooj, S.: Dengue- how best to classify it. Clin. Infect. Dis. 53, 563–567 (2011)
Watt, G., Jongsakul, K., Chouriyagune, C., Paris, R.: Differentiating dengue virus infection from scrub typhus in thai adults with fever. Am. J. Trop. Med. Hyg. 68, 536–538 (2003)
Chang, K., Lu, P.-L., Ko, W.-C., Tsai, J.-J., Tsai, W.-H., Chen, C.-D., Chen, Y.-H., Chen, T.-C., Hsieh, H.-C., Pan, C.-Y., Harn, M.-R.: Dengue fever scoring system: new strategy for the early detection of acute dengue virus infection in Taiwan. J. Formos. Med. Assoc. 108, 879–885 (2009)
Mitra, S., Gautam, I., Jambugulam, M., Abhilash, K.P., Jayaseeelan, V.: Clinical score to differentiate scrub typhus and dengue: a tool to differentiate scrub typhus and dengue. J. Glob. Infect. Dis. 9, 12 (2017)
Xuan, C., Phuong, T., Nhan, N.T., Kneen, R.: Clinical diagnosis and assessment of severity of confirmed dengue infections in vietnamese children: is the world health organization classification system helpful? Am. J. Trop. Med. Hyg. 70, 172–179 (2004)
Pongpan, S., Wisitwong, A., Tawichasri, C., Patumanond, J., Namwongprom, S., Casimir, G.J., Tokiwa, K., Vasarhelyi, B.: Clinical Study Development of Dengue Infection Severity Score. ISRN Pediatr. 2013, 1–6 (2013). doi:10.1155/2013/845876
Pone, S.M., Hökerberg, H.Y.M., De Oliveira, R. de C.V., Daumas, R.P., Pone, T.M., Pone, M.V.D.S., Brasil, P.: Clinical and laboratory signs associated to serious dengue disease in hospitalized children. J. Pediatr. (Rio J) 92, 464–471 (2016). doi:10.1016/j.jped.2015.12.005
Chittaro, L.: Information visualization and its application to medicine. Artif. Intell. Med. 22, 81–88 (2001). doi:10.1016/S0933-3657(00)00101-9
Thomas, J.J, Khader, A.T., Belaton, B.: A parallel coordinates visualization for the uncapaciated examination timetabling problem. In: Badioze Zaman, H., Robinson, P., Petrou, M., Olivier, P., Shih, T.K., Velastin, S., Nyström, I. (eds.) IVIC 2011. LNCS, vol. 7066, pp. 87–98. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25191-7_10
Steinparz, S., Abmair, R., Bauer, A., Feiner, J.: InfoVis – parallel coordinates (2010). http://courses.iicm.tugraz.at/ivis/surveys/ss2010/g3-survey-parcoord.pdf
Riley, G.: CLIPS (2013). http://www.clipsrules.net
Kumar, S., Prasad, R.: Importance of Expert System Shell in Development of Expert System. Int. J. Innov. Res. Dev. 4, 128–133 (2015)
Acknowledgements
KDU College (PG) Sdn Bhd has funded the work as an internal research grant scheme to the Department of Computing to conduct the computational medical research. We thank KDU Penang University College, Intelligent Processing Applications (IPA) research cluster under the Department of Computing has provided the venue to conduct and complete the research work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Ooi, J.Y.L., Thomas, J.J. (2017). DengueViz: A Knowledge-Based Expert System Integrated with Parallel Coordinates Visualization in the Dengue Diagnosis. In: Badioze Zaman, H., et al. Advances in Visual Informatics. IVIC 2017. Lecture Notes in Computer Science(), vol 10645. Springer, Cham. https://doi.org/10.1007/978-3-319-70010-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-70010-6_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70009-0
Online ISBN: 978-3-319-70010-6
eBook Packages: Computer ScienceComputer Science (R0)