Skip to main content

Improving Generalization Capability of Extreme Learning Machine with Synthetic Instances Generation

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10634))

Included in the following conference series:

Abstract

In this paper, instead of modifying the framework of Extreme learning machine (ELM), we propose a learning algorithm to improve generalization ability of ELM with Synthetic Instances Generation (SIGELM). We focus on optimizing the output-layer weights via adding informative synthetic instances to the training dataset at each learning step. In order to get the required synthetic instances, a neighborhood is determined for each high-uncertainty training sample and then the synthetic instances which enhance the training performance of ELM are selected in the neighborhood. The experimental results based on 4 representative regression datasets of KEEL demonstrate that our proposed SIGELM obviously improves the generalization capability of ELM and effectively decreases the phenomenon of over-fitting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)

    Article  Google Scholar 

  2. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B 42(2), 513–529 (2012)

    Article  Google Scholar 

  3. Zong, W., Huang, G.B.: Face recognition based on extreme learning machine. Neurocomputing 74(16), 2541–2551 (2011)

    Article  Google Scholar 

  4. Singh, R., Balasundaram, S.: Application of extreme learning machine method for time series analysis. Int. J. Intell. Technol. 2(4), 256–262 (2007)

    Google Scholar 

  5. You, Z.H., Li, L., Ji, Z., Guo, S.: Prediction of protein-protein interactions from amino acid sequences using extreme learning machine combined with auto covariance descriptor. In: 2013 IEEE Workshop on Memetic Computing, pp. 80–85. IEEE Press, New York (2013)

    Google Scholar 

  6. Akusok, A., Björk, K.M., Miche, Y., Lendasse, A.: High-performance extreme learning machines: a complete toolbox for big data applications. IEEE Access 3, 1011–1025 (2015)

    Article  Google Scholar 

  7. Zhu, Q.Y., Qin, A.K., Suganthan, P.N., Huang, G.B.: Evolutionary extreme learning machine. Pattern Recogn. 38(10), 1759–1763 (2005)

    Article  MATH  Google Scholar 

  8. Han, F., Yao, H.F., Ling, Q.H.: An improved evolutionary extreme learning machine based on particle swarm optimization. Neurocomputing 116, 87–93 (2013)

    Article  Google Scholar 

  9. Wang, Y., Cao, F., Yuan, Y.: A study on effectiveness of extreme learning machine. Neurocomputing 74(16), 2483–2490 (2011)

    Article  Google Scholar 

  10. Huang, G.B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing 70(16), 3056–3062 (2007)

    Article  Google Scholar 

  11. Huang, G.B., Chen, L.: Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16), 3460–3468 (2008)

    Article  Google Scholar 

  12. Huang, G.B., Li, M.B., Chen, L., Siew, C.K.: Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing 71(4), 576–583 (2008)

    Article  Google Scholar 

  13. Liu, N., Wang, H.: Ensemble based extreme learning machine. IEEE Signal Process. Lett. 17(8), 754–757 (2010)

    Article  Google Scholar 

  14. Wang, X., Chen, A., Feng, H.: Upper integral network with extreme learning mechanism. Neurocomputing 74(16), 2520–2525 (2011)

    Article  Google Scholar 

  15. Cao, J., Lin, Z., Huang, G.B., Liu, N.: Voting based extreme learning machine. Inf. Sci. 185(1), 66–77 (2012)

    Article  MathSciNet  Google Scholar 

  16. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J.: KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Mult. Log. Soft Comput. 17(23), 255–287 (2011)

    Google Scholar 

  17. Wand, M.P., Jones, M.C.: Kernel Smoothing. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

Download references

Acknowledgments

The first author and corresponding author contributed equally the same to this article which is supported by National Natural Science Foundations of China (61503252 and 61473194) and China Postdoctoral Science Foundation (2016T90799).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulin He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ao, W., He, Y., Huang, J.Z., He, Y. (2017). Improving Generalization Capability of Extreme Learning Machine with Synthetic Instances Generation. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10634. Springer, Cham. https://doi.org/10.1007/978-3-319-70087-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70087-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70086-1

  • Online ISBN: 978-3-319-70087-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics