Abstract
In order to solve the problems of motion blur and fast motion, a new robust object tracking algorithm using the Kernelized Correlation Filters (KCF) and the Mean Shift (MS) algorithm, called KCFMS is presented in this paper. The object tracking process can be described as: First, we give the initial position and size of the object and use the Mean Shift algorithm to obtain the position of the object. Second, the Kernelized Correlation Filtering algorithm is used to obtain the position of the object in the same frame. Third, we use the cross update strategy to update the object models. In order to improve the tracking speed as much as possible, our object tracking algorithm works only over one layer. This hybrid algorithm has a good tracking effect on the target fast motion and motion blur. We present extensive experimental results on a number of challenging sequences in terms of efficiency, accuracy and robustness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 1–17 (2006)
Lasserre, J.A., Bishop, C.M., Minka, T.P.: Principled hybrids of generative and discriminative models. In: 19th IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 87–94. IEEE Computer Society, New York (2006)
Ng, A., Jordan, M.I.: On discriminative vs. generative classifiers: a comparison of logistic regression and Naive Bayes. In: Proceedings of Advances in Neural Information Processing, vol. 28, no. 3, pp. 169–187 (2001)
Lin, R.S., Ross, D.A., Lim, J., et al.: Adaptive discriminative generative model and its applications. In: Neural Information Processing Systems, pp. 801–808 (2004)
Yang, M., Wu, Y.: Tracking non-stationary appearances and dynamic feature selection. In: 18th IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1059–1066. IEEE Computer Society, San Diego (2005)
Yu, Q., Dinh, T.B., Medioni, G.: Online tracking and reacquisition using co-trained generative and discriminative trackers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 678–691. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88688-4_50
Tang, F., Brennan, S., Zhao, Q., et al.: Co-tracking using semi-supervised support vector machines. In: 9th IEEE International Conference on Computer Vision, pp. 1–8. IEEE (2003)
Cauwenberghs, G., Poggio, T.: Incremental and decremental support vector machine learning. In: 13th International Conference on Neural Information Processing Systems, vol. 1, pp. 388–394. MIT Press, Denver (2000)
Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)
Kalal, Z., Matas, J., Mikolajczyk, K.: P-N learning: bootstrapping binary classifiers by structural constraints. In: 23rd IEEE Conference on Computer Vision and Pattern Recognition, vol. 238, pp. 49–56. IEEE Computer Society, San Francisco (2010)
Comaniciu, D., Menber, V.R., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 564–575 (2003)
Henriques, J.F., Rui, C., Martins, P., et al.: High-speed tracking with Kernelized Correlation Filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2014)
Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. IEEE Trans. Comput. Vis. Pattern Recogn. 37(9), 1834–1848 (2015)
Zhang, K., Zhang, L., Yang, M.H.: Fast compressive tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 2002–2015 (2014)
Zhang, K., Zhang, L., Liu, Q., Zhang, D., Yang, M.-H.: Fast visual tracking via dense spatio-temporal context learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 127–141. Springer, Cham (2014). doi:10.1007/978-3-319-10602-1_9
Acknowledgment
This work is partially supported by the National Natural Science Foundation of China (61402310). Natural Science Foundation of Jiangsu Province of China (BK20141195).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Zhou, H., Ma, X., Bian, L. (2017). Object Tracking Based on Mean Shift Algorithm and Kernelized Correlation Filter Algorithm. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10636. Springer, Cham. https://doi.org/10.1007/978-3-319-70090-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-70090-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70089-2
Online ISBN: 978-3-319-70090-8
eBook Packages: Computer ScienceComputer Science (R0)