Skip to main content

Origami Folding Sequence Generation Using Discrete Particle Swarm Optimization

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

  • 4183 Accesses

Abstract

This paper proposes a novel approach to automating origami or paper folding. The folding problem is formulated as a combinatorial optimization problem to automatically find feasible folding sequences toward the desired shape from a generic crease pattern, minimizing the dissimilarity between the current and desired origami shapes. Specifically, we present a discrete particle swarm optimization algorithm, which can take advantage of the classical particle swarm optimization algorithm in a discrete folding action space. Through extensive numerical experiments, we have shown that the proposed approach can generate an optimum origami folding sequence by iteratively minimizing the Hausdorff distance, a dissimilarity metric between two geometric shapes. Moreover, an in-house origami simulator is newly developed to visualize the sequence of origami folding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akitaya, H.A., Mitani, J., Kanamori, Y., Fukui, Y.: Generating folding sequences from crease patterns of flat-foldable origami. In: ACM SIGGRAPH 2013 Posters, SIGGRAPH 2013, p. 20:1. ACM, New York (2013). http://doi.acm.org/10.1145/2503385.2503407

  2. An, B., Benbernou, N., Demaine, E.D., Rus, D.: Planning to fold multiple objects from a single self-folding sheet. Robotica 29(1), 87–102 (2011)

    Article  Google Scholar 

  3. Balkcom, D.J., Mason, M.T.: Robotic origami folding. Int. J. Robot. Res. 27(5), 613–627 (2008). doi:10.1177/0278364908090235

    Article  Google Scholar 

  4. Clerc, M.: Discrete particle swarm optimization, illustrated by the traveling salesman problem. In: Onwubolu, G.C., Babu, B.V. (eds.) New Optimization Techniques in Engineering, pp. 219–239. Springer, Heidelberg (2004). doi:10.1007/978-3-540-39930-8_8

    Chapter  Google Scholar 

  5. Clerc, M.: Standard Particle Swarm Optimisation, 15 p., September 2012. https://hal.archives-ouvertes.fr/hal-00764996

  6. Deza, M.M., Deza, E.: Encyclopedia of distances. In: Deza, M.M., Deza, E. (eds.) Encyclopedia of Distances, pp. 1–583. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00234-2_1

    Chapter  Google Scholar 

  7. Felton, S., Tolley, M., Demaine, E., Rus, D., Wood, R.: A method for building self-folding machines. Science 345(6197), 644–646 (2014). http://science.sciencemag.org/content/345/6197/644

    Article  Google Scholar 

  8. Hawkes, E., An, B., Benbernou, N.M., Tanaka, H., Kim, S., Demaine, E.D., Rus, D., Wood, R.J.: Programmable matter by folding. Proc. Natl. Acad. Sci. 107(28), 12441–12445 (2010). http://www.pnas.org/content/107/28/12441.abstract

    Article  Google Scholar 

  9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: 1995 Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, November 1995

    Google Scholar 

  10. Margalit, F.: Akira Yoshizawa, 94, modern origami master. N. Y. Times (2005)

    Google Scholar 

  11. Miyashita, S., Guitron, S., Ludersdorfer, M., Sung, C.R., Rus, D.: An untethered miniature origami robot that self-folds, walks, swims, and degrades. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1490–1496, May 2015

    Google Scholar 

  12. Miyazaki, S., Yasuda, T., Yokoi, S., Toriwaki, J.: An origami playing simulator in the virtual space. J. Vis. Comput. Animat. 7(1), 25–42 (1996). doi:10.1002/(SICI)1099-1778(199601)7:1<25::AID-VIS134>3.0.CO;2-V

    Article  Google Scholar 

  13. Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: 2011 IEEE International Conference on Robotics and Automation, pp. 1–4, May 2011

    Google Scholar 

  14. Tachi, T.: Freeform rigid-foldable structure using bidirectionally flat-foldable planar quadrilateral mesh. In: Ceccato, C., Hesselgren, L., Pauly, M., Pottmann, H., Wallner, J. (eds.) Advances in Architectural Geometry, pp. 87–102. Springer Vienna, Vienna (2010). doi:10.1007/978-3-7091-0309-8_6

    Google Scholar 

  15. Tachi, T.: Freeform variations of origami. J. Geom. Graph. 14(2), 203–215 (2010)

    MATH  MathSciNet  Google Scholar 

  16. Tachi, T.: Freeform origami (2010–2016). www.tsg.ne.jp/TT/software/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha-Duong Bui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bui, HD., Jeong, S., Chong, N.Y., Mason, M. (2017). Origami Folding Sequence Generation Using Discrete Particle Swarm Optimization. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics