Skip to main content

Evolutionary Modularity Optimization Clustering of Neuronal Spike Trains

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

  • 4363 Accesses

Abstract

We propose a method for automatic evolutionary clustering of multi neuronal spike trains on the basis of community detection in complex networks. We use a genetic algorithm for optimization to maximize the modularity for community partitioning and then automatically determine the number of clusters hidden in the multi neuronal spike trains. The number of clusters does not need to be specified in advance. Compared with the traditional graph partitioning method, the genetic evolutionary modularity optimization clustering algorithm can obtain the maximum value of modularity and, determine the number of communities. We evaluate the performance of this method on surrogate spike train datasets with ground truth. The results obtained showed improvement. We then apply this proposed method to raw real spike trains. We obtain a larger value for modularity and the results. This finding suggests that the proposed method can be used to detect the hidden firing pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stevenson, I.H., Kording, K.P.: How advances in neural recording affect data analysis. Nat. Neurosci. 14(2), 139–142 (2011)

    Article  Google Scholar 

  2. Hartigan, J.A.: Cluster Algorithms. Wiley, New York (1975)

    MATH  Google Scholar 

  3. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Precessing Systems 14 (2001)

    Google Scholar 

  4. Humphries, M.D.: Spike-train communities: finding groups of similar spike trains. J. Neurosci. 31(6), 2321–2336 (2011)

    Article  Google Scholar 

  5. Newman, M.E.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)

    Article  Google Scholar 

  6. Newman, M.E.: Modularity and community structure in networks. Proc. Nat. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  7. Hu, L., Hui, W.: Detecting community structure in networks based on community coefficients. Physica A Stat. Mech. Appl. 391, 6156–6164 (2012)

    Article  Google Scholar 

  8. Dauwels, J., Vialatte, F., Weber, T., Cichocki, A.: On similarity measures for spike trains. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5506, pp. 177–185. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02490-0_22

    Chapter  Google Scholar 

  9. Paiva, A.R., Park, I., Prncipe, J.C.: A comparison of binless spike train measures. Neural Comput. Appl. 19(3), 405–419 (2010)

    Article  Google Scholar 

  10. Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Phys. Rev. E 72(2), 027104 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Project No. 61375122 and Project No. 61572239), China Postdoctoral Science Foundation (Project No. 2014M551324). Scientific Research Foundation for Advanced Talents of Jiangsu University (Project No. 14JDG040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yu, C., Zhu, Y., Song, Y., Lu, H. (2017). Evolutionary Modularity Optimization Clustering of Neuronal Spike Trains. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics