Skip to main content

Temporal Attention Neural Network for Video Understanding

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10635))

Included in the following conference series:

  • 8470 Accesses

Abstract

Deep learning based vision understanding algorithms have recently approached human-level performance in object recognition and image captioning. These performance evaluations are, however, limited to static data and these algorithms are also limited. Few limitations of these methods include their inability to selectively encode human behavior, movement of multiple objects and time-varying variations in the background. To address these limitations and to extend these algorithms for analyzing dynamic videos, we propose a temporal attention CNN-RNN network with motion saliency map. Our proposed model overcome scarcity of usable information in encoded data and efficiently integrate motion features by incorporating dynamic nature of information present in successive frames. We evaluate our proposed model over UCF101 public dataset and our experiments demonstrate that our proposed model successfully extract motion information for video understanding without any computationally intensive preprocessing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  2. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2015)

    Google Scholar 

  3. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)

    Google Scholar 

  4. Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., Darrell, T.: Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2625–2634 (2015)

    Google Scholar 

  5. Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell, T., Saenko, K.: Sequence to sequence-video to text. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4534–4542 (2015)

    Google Scholar 

  6. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using lstms. In: International Conference on Machine Learning, pp. 843–852 (2015)

    Google Scholar 

  7. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  8. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, pp. 568–576 (2014)

    Google Scholar 

  9. Ban, S.W., Lee, I., Lee, M.: Dynamic visual selective attention model. Neurocomputing 71(4), 853–856 (2008)

    Article  Google Scholar 

  10. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3551–3558 (2013)

    Google Scholar 

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  12. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  13. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Ghemawat, S.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  14. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Tran, D., Bourdev, L.D., Fergus, R., Torresani, L., Paluri, M.: C3D: generic features for video analysis. CoRR, abs/1412.0767, 2(7), 8 (2014)

    Google Scholar 

Download references

Acknowledgement

This work was partly supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (R7124-16-0004, Development of Intelligent Interaction Technology Based on Context Awareness and Human Intention Understanding) (50%) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2016R1E1A2020559) (50%).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minho Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Son, J., Jang, GJ., Lee, M. (2017). Temporal Attention Neural Network for Video Understanding. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10635. Springer, Cham. https://doi.org/10.1007/978-3-319-70096-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70096-0_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70095-3

  • Online ISBN: 978-3-319-70096-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics