Skip to main content

Robust Deep Face Recognition with Label Noise

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10635))

Included in the following conference series:

Abstract

In the last few years, rapid development of deep learning method has boosted the performance of face recognition systems. However, face recognition still suffers from a diverse variation of face images, especially for the problem of face identification. The high expense of labelling data makes it hard to get massive face data with accurate identification information. In real-world applications, the collected data are mixed with severe label noise, which significantly degrades the generalization ability of deep learning models. In this paper, to alleviate the impact of the label noise, we propose a robust deep face recognition (RDFR) method by automatic outlier removal. The noisy faces are automatically recognized and removed, which can boost the performance of the learned deep models. Experiments on large-scale face datasets LFW, CCFD, and COX show that RDFR can effectively remove the label noise and improve the face recognition performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: Computer Vision and Pattern Recognition (CVPR), pp. 1701–1708. IEEE (2014)

    Google Scholar 

  2. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  3. You, Q., Jin, H., Wang, Z., Fang, C., Luo, J.: Image captioning with semantic attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4651–4659 (2016)

    Google Scholar 

  4. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  5. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Computer Vision and Pattern Recognition (CVPR), pp. 815–823 (2015)

    Google Scholar 

  6. Sun, Y., Liang, D., Wang, X., Tang, X.: Deepid3: Face recognition with very deep neural networks (2015). arXiv preprint: arXiv:1502.00873

  7. Ariz, M., Bengoechea, J.J., Villanueva, A., Cabeza, R.: A novel 2d/3d database with automatic face annotation for head tracking and pose estimation. In: Computer Vision and Image Understanding, vol. 148, pp. 201–210 (2016)

    Google Scholar 

  8. Manwani, N., Sastry, P.S.: Noise tolerance under risk minimization. IEEE Trans. Cybern. 43(3), 1146 (2011)

    Article  Google Scholar 

  9. Patrini, G., Nielsen, F., Nock, R., Carioni, M.: Loss factorization, weakly supervised learning and label noise robustness. In: International Conference on International Conference on Machine Learning, pp. 708–717 (2016)

    Google Scholar 

  10. Gao, W., Wang, L., Li, Y.F., Zhou, Z.H.: Risk minimization in the presence of label noise. In: AAAI, pp. 1575–1581 (2016)

    Google Scholar 

  11. Zhang, J., Sheng, V.S., Li, T., Wu, X.: Improving crowdsourced label quality using noise correction. IEEE Trans. Neural Netw. Learn. Syst. (2017)

    Google Scholar 

  12. Brodley, C.E., Friedl, M.A.: Identifying and eliminating mislabeled training instances. In: Thirteenth National Conference on Artificial Intelligence, pp. 799–805 (1996)

    Google Scholar 

  13. Schroff, F., Criminisi, A., Zisserman, A.: Harvesting image databases from the web. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 754–766 (2011)

    Article  Google Scholar 

  14. Li, L.J., Fei-Fei, L.: Optimol: automatic online picture collection via incremental model learning. Int. J. Comput. Vis. 88(2), 147–168 (2010)

    Article  Google Scholar 

  15. Collins, B., Deng, J., Li, K., Fei-Fei, L.: Towards scalable dataset construction: an active learning approach. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 86–98. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88682-2_8

    Chapter  Google Scholar 

  16. Kim, J., Scott, C.D.: Robust kernel density estimation. J. Mach. Learn. Res. 13, 2529–2565 (2012)

    MATH  MathSciNet  Google Scholar 

  17. Elhamifar, E., Sapiro, G., Vidal, R.: See all by looking at a few: sparse modeling for finding representative objects. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1600–1607. IEEE (2012)

    Google Scholar 

  18. Liu, W., Hua, G., Smith, J.R.: Unsupervised one-class learning for automatic outlier removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3826–3833 (2014)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). arXiv preprint: arXiv:1512.03385

  20. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part III. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). doi:10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  21. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical report 07-49, University of Massachusetts, Amherst, October 2007

    Google Scholar 

  22. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch (2014). arXiv preprint: arXiv:1411.7923

Download references

Acknowledgements

This work was supported by the National Program on Key Basic Research Project under Grant 2013CB329304, the National Natural Science Foundation of China under Grants 61502332, 61432011, 61222210.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jirui Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yuan, J., Ma, W., Zhu, P., Egiazarian, K. (2017). Robust Deep Face Recognition with Label Noise. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10635. Springer, Cham. https://doi.org/10.1007/978-3-319-70096-0_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70096-0_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70095-3

  • Online ISBN: 978-3-319-70096-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics