Skip to main content

The Abstraction for Trajectories with Different Numbers of Sampling Points

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10639))

Included in the following conference series:

  • 3452 Accesses

Abstract

Trajectory abstraction is an efficient way to handle the large amount of information included in complex trajectory data. Based on the previous work, this paper proposes an improved framework for abstracting trajectories, which consists of three major stages. First, the original trajectories in different lengths are matched into groups according to their similarities, and then a non-local denoising approach, based on the wavelet thresholding technique, is performed on these groups to summarize trajectories. Last, a combined version of the compacted trajectories is obtained as the final trajectory abstraction. To avoid loss of trajectory features introduced by the resampling technique, we provide a novel method to convert trajectories in different lengths into suppositional equal, which serves for the similarity measurement and the wavelet thresholding. Extensive experiments on real and synthetic trajectory datasets demonstrate that the proposed trajectory abstraction achieves very potential results dealing with complex trajectory data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www-users.cs.umn.edu/~aleks/inclof/.

  2. 2.

    http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/default.aspx.

References

  1. Chakka, V.P., Everspaugh, A.C., Patel, J.M.: Indexing large trajectory data sets with seti. Ann Arbor 1001(48109–2122), 12 (2003)

    Google Scholar 

  2. Zheng, Y.: Tutorial on location-based social networks. In: Proceedings of the 21st International Conference on World Wide Web, WWW, vol. 12 (2012)

    Google Scholar 

  3. Morris, B.T., Trivedi, M.M.: Understanding vehicular traffic behavior from video: a survey of unsupervised approaches. J. Electron. Imaging 22(4), 041113 (2013)

    Article  Google Scholar 

  4. Luo, X., Xu, Q., Guo, Y., Wei, H., Lv, Y.: Trajectory abstracting with group-based signal denoising. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9491, pp. 452–461. Springer, Cham (2015). doi:10.1007/978-3-319-26555-1_51

    Chapter  Google Scholar 

  5. Chakrabarti, S., Ester, M., Fayyad, U., Gehrke, J., Han, J., Morishita, S., Piatetsky-Shapiro, G., Wang, W.: Data mining curriculum: a proposal (version 1.0). Intensive Working Group of ACM SIGKDD Curriculum Committee (2006)

    Google Scholar 

  6. Christopher, C.: Encyclopaedia britannica: definition of data mining. Technical report (2010). Accessed 09 Dec 2010

    Google Scholar 

  7. Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Math. Intell. 27(2), 83–85 (2005)

    Google Scholar 

  8. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD 1996, pp. 226–231 (1996)

    Google Scholar 

  9. Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: Optics: ordering points to identify the clustering structure. In: ACM SIGMOD Record, vol. 28, pp. 49–60. ACM (1999)

    Google Scholar 

  10. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Wang, W., Yang, J., Muntz, R., et al.: Sting: a statistical information grid approach to spatial data mining. In: VLDB 1997, pp. 186–195 (1997)

    Google Scholar 

  12. Rui, X., Wunsch, D., et al.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645–678 (2005)

    Article  Google Scholar 

  13. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.-Y.: Understanding mobility based on GPS data. In: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 312–321. ACM (2008)

    Google Scholar 

  14. Zheng, Y., Xie, X., Ma, W.-Y.: Geolife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)

    Google Scholar 

  15. Zheng, Y., Zhang, L., Xie, X., Ma, W.-Y.: Mining interesting locations and travel sequences from GPS trajectories. In: Proceedings of the 18th International Conference on World Wide Web, pp. 791–800. ACM (2009)

    Google Scholar 

  16. Anjum, N., Cavallaro, A.: Multifeature object trajectory clustering for video analysis. IEEE Trans. Circ. Syst. Video Technol. 18(11), 1555–1564 (2008)

    Article  Google Scholar 

  17. Piciarelli, C., Micheloni, C., Foresti, G.L.: Trajectory-based anomalous event detection. IEEE Trans. Circ. Syst. Video Technol. 18(11), 1544–1554 (2008)

    Article  Google Scholar 

  18. Morris, B.T., Trivedi, M.M.: Trajectory learning for activity understanding: unsupervised, multilevel, and long-term adaptive approach. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2287–2301 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by Natural Science Foundation of China (61471261, 61179067, U1333110), and by grants TIN2013-47276-C6-1-R from Spanish Government and 2014-SGR-1232 from Catalan Government (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, P., Xu, Q., Wei, H., Guo, Y., Luo, X., Sbert, M. (2017). The Abstraction for Trajectories with Different Numbers of Sampling Points. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10639. Springer, Cham. https://doi.org/10.1007/978-3-319-70136-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70136-3_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70135-6

  • Online ISBN: 978-3-319-70136-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics