Skip to main content

A New Vector Space Model Based on the Deep Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10639))

Included in the following conference series:

  • 3437 Accesses

Abstract

Deep learning has become one of the top performing methods for many computer vision tasks such as images retrieval. It has been deployed so far to bring improvements to learning feature representations and similarity measures.

In this article, we present a new search method to represent and to retrieve images based on the vector space method, called vectorization. This method transforms any matching model of images to a vector space model providing a score using the Convolutional Neural Networks (CNN). The results obtained by this model are illustrated through some experiments and compared with several state-of-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://lear.inrialpes.fr/~jegou/data.php.

  2. 2.

    http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/.

References

  1. Karamti, H.: Vectorisation du modèle d’appariement pour la recherche d’images par le contenu. In: CORIA, pp. 335–340 (2013)

    Google Scholar 

  2. David, G.L.: Object recognition from local scale-invariant features. In: ICCV, pp. 1150–1157 (1999)

    Google Scholar 

  3. Becker, C., Rigamonti, R., Lepetit, V., Fua, P.: Supervised feature learning for curvilinear structure segmentation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 526–533. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40811-3_66

    Chapter  Google Scholar 

  4. Wang, D., Tan, X.: C-SVDDNet: an effective single-layer network for unsupervised feature learning (2014)

    Google Scholar 

  5. Chatzichristofis, S.A., Boutalis, Y.S.: CEDD: color and edge directivity descriptor: a compact descriptor for image indexing and retrieval. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 312–322. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79547-6_30

    Chapter  Google Scholar 

  6. Dong, K.P., Yoon, S.J., Chee, S.: Efficient use of local edge histogram descriptor. In: Proceedings of the ACM Multimedia 2000 Workshops, pp. 51–54 (2000)

    Google Scholar 

  7. Anil, K., Karthik, N., Arun, R.: Score normalization in multimodal biometric systems. Pattern Recogn. 38, 2270–2285 (2005)

    Article  Google Scholar 

  8. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Eric, T., Trevor, D.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: ICML, pp. 647–655 (2014)

    Google Scholar 

  9. Salembier, T., Phillipe, S.: Introduction to MPEG-7: Multimedia Content Description Interface. Wiley, New York (2002)

    Google Scholar 

  10. Krizhevsky, A., Sutskever, I.H.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  11. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)

    Google Scholar 

  12. Tolias, G., Avrithis, Y., Jégou, H.: Image search with selective match kernels: aggregation across single and multiple images. IJCV 116, 247–261 (2015)

    Article  MathSciNet  Google Scholar 

  13. Karamti, H., Tmar, M., Visani, M., Urruty, T., Gargouri, F.: Vector space model adaptation and pseudo relevance feedback for content-based image retrieval. Multimedia Tools and Applications, pp. 1–27 (2017)

    Google Scholar 

  14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014)

    Google Scholar 

  15. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.B., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the ACM International (2014)

    Google Scholar 

  16. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman.: A object retrieval with large vocabularies and fast spatial matching. In: CVPR (2007)

    Google Scholar 

  17. Jégou, H., Zisserman, A.: Triangulation embedding and democratic aggregation for image search. In: CVPR (2014)

    Google Scholar 

  18. Gordo, A., Rodriguez-Serrano, J.A., Perronnin, F., Valveny, E.: Leveraging category-level labels for instance-level image retrieval. In: CVPR (2012)

    Google Scholar 

  19. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584–599. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1_38

    Google Scholar 

  20. Ng, J.Y.H., Yang.F, Davis, L.S.: Exploiting local features from deep networks for image retrieval. In: CVPR Workshops (2015)

    Google Scholar 

  21. Babenko, A., Lempitsky, V.S.: Aggregating deep convolutional features for image retrieval. In: ICCV (2015)

    Google Scholar 

  22. Gong, Y., Wang, L., Guo, R., Lazebnik, S.: Multi-scale orderless pooling of deep convolutional activation features. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 392–407. Springer, Cham (2014). doi:10.1007/978-3-319-10584-0_26

    Google Scholar 

  23. Paulin, M., Douze, M., Harchaoui, Z., Mairal, J., Perronin, F., Schmid, C.: Local convolutional features with unsupervised training for image retrieval. In: ICCV (2015)

    Google Scholar 

  24. Tolias, G., Sicre, R., Jégou, H.: Particular object retrieval with integral max-pooling of CNN activations. In: ICLR (2016)

    Google Scholar 

  25. Kalantidis, Y., Mellina, C., Osindero, S.: Cross-dimensional weighting for aggregated deep convolutional features. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 685–701. Springer, Cham (2016). doi:10.1007/978-3-319-46604-0_48

    Chapter  Google Scholar 

  26. Radenović, F., Tolias, G., Chum, O.: CNN image retrieval learns from BoW: unsupervised fine-tuning with hard examples. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 3–20. Springer, Cham (2016). doi:10.1007/978-3-319-46448-0_1

    Chapter  Google Scholar 

  27. Eiji, K., Akio, Y.: The MPEG-7 color layout descriptor: a compact image feature description for high-speed image/video segment retrieval. ICIP 1, 674–677 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanen Karamti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Karamti, H., Tmar, M., Gargouri, F. (2017). A New Vector Space Model Based on the Deep Learning. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10639. Springer, Cham. https://doi.org/10.1007/978-3-319-70136-3_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70136-3_79

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70135-6

  • Online ISBN: 978-3-319-70136-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics