Skip to main content

Alternative Variable Splitting Methods to Learn Sum-Product Networks

  • Conference paper
  • First Online:
AI*IA 2017 Advances in Artificial Intelligence (AI*IA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10640))

Included in the following conference series:

Abstract

Sum-Product Networks (SPNs) are recent deep probabilistic models providing exact and tractable inference. SPNs have been successfully employed as density estimators in several application domains. However, learning an SPN from high dimensional data still poses a challenge in terms of time complexity. This is due to the high cost of determining independencies among random variables (RVs) and sub-populations among samples, two operations that are repeated several times. Even one of the simplest greedy structure learner, LearnSPN, scales quadratically in the number of the variables to determine RVs independencies. In this work we investigate approximate but fast procedures to determine independencies among RVs whose complexity scales in sub-quadratic time. We propose two procedures: a random subspace approach and one that adopts entropy as a criterion to split RVs in linear time. Experimental results prove that LearnSPN equipped by our splitting procedures is able to reduce learning and/or inference times while preserving comparable inference accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that it is always possible to transform an SPN with adjacent nodes of the same type into an equivalent one with alternating types [24].

  2. 2.

    We set k to be at least 2 when \(n = |\varvec{X}| < 4\).

  3. 3.

    For a discrete RV X, having values in \(\mathcal {X}\), we consider its discrete entropy as \(H(X)=-\sum _{x\in \mathcal {X}}p(x)\log (p(x))\).

  4. 4.

    For convenience, and to avoid the addition of a new hyperparameter, the Laplacian smoothing parameter value will be the same of the hyperparameter \(\alpha \) of LearnSPN, used to smooth the univariate distributions at leaves. Note that now \(\eta \) substitutes the hyperparameter \(\rho \) which is not needed anymore.

  5. 5.

    Code is available at https://github.com/fabriziov/alt-vs-spyn.

References

  1. Adel, T., Balduzzi, D., Ghodsi, A.: Learning the structure of sum-product networks via an SVD-based algorithm. In: UAI (2015)

    Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  3. Cheng, W., Kok, S., Pham, H.V., Chieu, H.L., Chai, K.M.A.: Language modeling with sum-product networks. In: INTERSPEECH 2014, pp. 2098–2102 (2014)

    Google Scholar 

  4. Darwiche, A.: A differential approach to inference in Bayesian networks. JACM 50(3), 280–305 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dennis, A., Ventura, D.: Learning the architecture of sum-product networks using clustering on variables. In: NIPS 25, pp. 2033–2041 (2012)

    Google Scholar 

  6. Di Mauro, N., Vergari, A., Basile, T.M.A.: Learning Bayesian random cutset forests. In: Esposito, F., Pivert, O., Hacid, M.-S., Raś, Z.W., Ferilli, S. (eds.) ISMIS 2015. LNCS (LNAI), vol. 9384, pp. 122–132. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25252-0_13

    Chapter  Google Scholar 

  7. Di Mauro, N., Vergari, A., Esposito, F.: Learning accurate cutset networks by exploiting decomposability. In: Gavanelli, M., Lamma, E., Riguzzi, F. (eds.) AI*IA 2015. LNCS, vol. 9336, pp. 221–232. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24309-2_17

    Chapter  Google Scholar 

  8. Friesen, A., Domingos, P.: The sum-product theorem: a foundation for learning tractable models. In: ICML, pp. 1909–1918 (2016)

    Google Scholar 

  9. Gens, R., Domingos, P.: Learning the structure of sum-product networks. In: ICML, pp. 873–880 (2013)

    Google Scholar 

  10. Haaren, J.V., Davis, J.: Markov network structure learning: a randomized feature generation approach. In: AAAI. AAAI Press (2012)

    Google Scholar 

  11. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  12. Lowd, D., Davis, J.: Learning Markov network structure with decision trees. In: ICDM, pp. 334–343. IEEE Computer Society Press (2010)

    Google Scholar 

  13. MacKay, D.J.C.: Information Theory, Inference & Learning Algorithms. Cambridge University Press, New York (2002)

    Google Scholar 

  14. Martens, J., Medabalimi, V.: On the Expressive Efficiency of Sum Product Networks. CoRR abs/1411.7717 (2014)

    Google Scholar 

  15. Molina, A., Natarajan, S., Kersting, K.: Poisson sum-product networks: a deep architecture for tractable multivariate poisson distributions. In: AAAI (2017)

    Google Scholar 

  16. Peharz, R.: Foundations of sum-product networks for probabilistic modeling. Ph.D. thesis, Graz University of Technology, SPSC (2015)

    Google Scholar 

  17. Peharz, R., Kapeller, G., Mowlaee, P., Pernkopf, F.: Modeling speech with sum-product networks: application to bandwidth extension. In: ICASSP (2014)

    Google Scholar 

  18. Poon, H., Domingos, P.: Sum-product networks: a new deep architecture. In: UAI 2011 (2011)

    Google Scholar 

  19. Queyranne, M.: Minimizing symmetric submodular functions. Math. Program. 82(1–2), 3–12 (1998)

    MATH  MathSciNet  Google Scholar 

  20. Rahman, T., Kothalkar, P., Gogate, V.: Cutset networks: a simple, tractable, and scalable approach for improving the accuracy of chow-liu trees. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS, vol. 8725, pp. 630–645. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44851-9_40

    Google Scholar 

  21. Rooshenas, A., Lowd, D.: Learning sum-product networks with direct and indirect variable interactions. In: ICML (2014)

    Google Scholar 

  22. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(12), 273–302 (1996)

    Article  MathSciNet  Google Scholar 

  23. Vergari, A., Di Mauro, N., Esposito, F.: Visualizing and understanding sum-product networks. CoRR abs/1608.08266 (2016)

    Google Scholar 

  24. Vergari, A., Di Mauro, N., Esposito, F.: Simplifying, regularizing and strengthening sum-product network structure learning. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9285, pp. 343–358. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23525-7_21

    Chapter  Google Scholar 

  25. Yuan, Z., Wang, H., Wang, L., Lu, T., Palaiahnakote, S., Tan, C.L.: Modeling spatial layout for scene image understanding via a novel multiscale sum-product network. Expert Syst. Appl. 63, 231–240 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio G. Ventola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di Mauro, N., Esposito, F., Ventola, F.G., Vergari, A. (2017). Alternative Variable Splitting Methods to Learn Sum-Product Networks. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds) AI*IA 2017 Advances in Artificial Intelligence. AI*IA 2017. Lecture Notes in Computer Science(), vol 10640. Springer, Cham. https://doi.org/10.1007/978-3-319-70169-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70169-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70168-4

  • Online ISBN: 978-3-319-70169-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics