Abstract
In recent years, the percentage of the population owning a smartphone has increased significantly. These devices provide the user with more and more functions, so that anyone is encouraged to carry one during the day, implicitly producing that can be analysed to infer knowledge of the user’s context. In this work we present a novel framework for Human Activity Recognition (HAR) using smartphone data captured by means of embedded triaxial accelerometer and gyroscope sensors. Some statistics over the captured sensor data are computed to model each activity, then real-time classification is performed by means of an efficient supervised learning technique. The system we propose also adopts a participatory sensing paradigm where user’s feedbacks on recognised activities are exploited to update the inner models of the system. Experimental results show the effectiveness of our solution as compared to other state-of-the-art techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Activity recognition API. https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionApi/, November 2016
Agate, V., de Paola, A., Lo Re, G., Morana, M.: A simulation framework for evaluating distributed reputation management systems. In: Omatu, S., et al. (eds.) Distributed Computing and Artificial Intelligence. Advances in Intelligent Systems and Computing, vol. 474, pp. 247–254. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-40162-1_27
Aggarwal, J.K., Xia, L.: Human activity recognition from 3D data: a review. Pattern Recogn. Lett. 48, 70–80 (2014)
Banos, O., Damas, M., Pomares, H., Prieto, A., Rojas, I.: Daily living activity recognition based on statistical feature quality group selection. Expert Syst. Appl. 39(9), 8013–8021 (2012)
Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24646-6_1
Baretta, D., Sartori, F., Greco, A., Melen, R., Stella, F., Bollini, L., D’addario, M., Steca, P.: Wearable devices and AI techniques integration to promote physical activity. In: Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct, pp. 1105–1108. ACM (2016)
Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M.B.: Participatory sensing. In: Workshop on World-Sensor-Web (WSW 2006): Mobile Device Centric Sensor Networks and Applications, pp. 117–134 (2006)
Cardone, G., Cirri, A., Corradi, A., Foschini, L., Maio, D.: MSF: an efficient mobile phone sensing framework. Int. J. Distrib. Sens. Netw. 9(3), 538937 (2013). http://dx.doi.org/10.1155/2013/538937
Cardone, G., Corradi, A., Foschini, L., Ianniello, R.: Participact: a large-scale crowdsensing platform. IEEE Trans. Emerg. Topics Comput. 4(1), 21–32 (2016)
Cottone, P., Gaglio, S., Lo Re, G., Ortolani, M.: User activity recognition for energy saving in smart homes. Pervasive Mob. Comput. 16(PA), 156–170 (2015)
Cottone, P., Lo Re, G., Maida, G., Morana, M.: Motion sensors for activity recognition in an ambient-intelligence scenario. In: 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 646–651 (2013)
Cvetković, B., Janko, V., Romero, A.E., Kafalı, Ö., Stathis, K., Luštrek, M.: Activity recognition for diabetic patients using a smartphone. J. Med. Syst. 40(12), 256 (2016)
De Paola, A., La Cascia, M., Lo Re, G., Morana, M., Ortolani, M.: Mimicking biological mechanisms for sensory information fusion. Biol. Inspired Cogn. Archit. 3, 27–38 (2013)
Gaglio, S., Lo Re, G., Morana, M.: Human activity recognition process using 3-D posture data. IEEE Trans. Hum.-Mach. Syst. 45(5), 586–597 (2015)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2 edn. Springer, Heidelberg (2009). https://doi.org/10.1007/978-0-387-84858-7
Hwang, S., Ryu, M., Yang, Y., Lee, N.: Fall detection with three-axis accelerometer and magnetometer in a smartphone. In: Proceedings of the International Conference on Computer Science and Technology, Jeju, Korea, pp. 25–27 (2012)
James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning: With Applications in R. Springer Publishing Company, Heidelberg (2014). https://doi.org/10.1007/978-1-4614-7138-7
Kwon, Y., Kang, K., Bae, C.: Unsupervised learning for human activity recognition using smartphone sensors. Expert Syst. Appl. 41(14), 6067–6074 (2014)
Lester, J., Choudhury, T., Borriello, G.: A practical approach to recognizing physical activities. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) Pervasive 2006. LNCS, vol. 3968, pp. 1–16. Springer, Heidelberg (2006). https://doi.org/10.1007/11748625_1
Lo Re, G., Morana, M., Ortolani, M.: Improving user experience via motion sensors in an ambient intelligence scenario. In: Proceedings of the 3rd International Conference on Pervasive Embedded Computing and Communication Systems, PECCS, vol. 1, pp. 29–34. INSTICC, SciTePress (2013)
Manzi, A., Dario, P., Cavallo, F.: A human activity recognition system based on dynamic clustering of skeleton data. Sensors 17(5), 1100 (2017)
Munther, A., Razif, R., AbuAlhaj, M., Anbar, M., Nizam, S.: A preliminary performance evaluation of K-means, KNN and EM unsupervised machine learning methods for network flow classification. J. Electr. Comput. Eng. 6(2), 778–784 (2016)
Paola, A.D., La Cascia, M., Lo Re, G., Morana, M., Ortolani, M.: User detection through multi-sensor fusion in an AmI scenario. In: 2012 15th International Conference on Information Fusion, pp. 2502–2509 (2012)
Park, S., Park, J., Al-masni, M., Al-antari, M., Uddin, M.Z., Kim, T.S.: A depth camera-based human activity recognition via deep learning recurrent neural network for health and social care services. Procedia Comput. Sci. 100, 78–84 (2016)
Patel, S., Park, H., Bonato, P., Chan, L., Rodgers, M.: A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9(1), 21 (2012)
Pinardi, S., Sartori, F., Melen, R.: Integrating knowledge artifacts and inertial measurement unit sensors for decision support. In: KMIS, pp. 307–313 (2016)
Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier, Amsterdam (2014)
Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. In: Aaai, vol. 5, pp. 1541–1546 (2005)
Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)
Subramanya, A., Raj, A., Bilmes, J.A., Fox, D.: Recognizing activities and spatial context using wearable sensors. arXiv preprint arXiv:1206.6869 (2012)
Torres-Huitzil, C., Alvarez-Landero, A.: Accelerometer-based human activity recognition in smartphones for healthcare services. In: Adibi, S. (ed.) Mobile Health. Springer Series in Bio-/Neuroinformatics, pp. 147–169. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-12817-7_7
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Concone, F., Gaglio, S., Lo Re, G., Morana, M. (2017). Smartphone Data Analysis for Human Activity Recognition. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds) AI*IA 2017 Advances in Artificial Intelligence. AI*IA 2017. Lecture Notes in Computer Science(), vol 10640. Springer, Cham. https://doi.org/10.1007/978-3-319-70169-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-70169-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70168-4
Online ISBN: 978-3-319-70169-1
eBook Packages: Computer ScienceComputer Science (R0)