Skip to main content

Smartphone Data Analysis for Human Activity Recognition

  • Conference paper
  • First Online:
AI*IA 2017 Advances in Artificial Intelligence (AI*IA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10640))

Included in the following conference series:

Abstract

In recent years, the percentage of the population owning a smartphone has increased significantly. These devices provide the user with more and more functions, so that anyone is encouraged to carry one during the day, implicitly producing that can be analysed to infer knowledge of the user’s context. In this work we present a novel framework for Human Activity Recognition (HAR) using smartphone data captured by means of embedded triaxial accelerometer and gyroscope sensors. Some statistics over the captured sensor data are computed to model each activity, then real-time classification is performed by means of an efficient supervised learning technique. The system we propose also adopts a participatory sensing paradigm where user’s feedbacks on recognised activities are exploited to update the inner models of the system. Experimental results show the effectiveness of our solution as compared to other state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Activity recognition API. https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionApi/, November 2016

  2. Agate, V., de Paola, A., Lo Re, G., Morana, M.: A simulation framework for evaluating distributed reputation management systems. In: Omatu, S., et al. (eds.) Distributed Computing and Artificial Intelligence. Advances in Intelligent Systems and Computing, vol. 474, pp. 247–254. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-40162-1_27

  3. Aggarwal, J.K., Xia, L.: Human activity recognition from 3D data: a review. Pattern Recogn. Lett. 48, 70–80 (2014)

    Article  Google Scholar 

  4. Banos, O., Damas, M., Pomares, H., Prieto, A., Rojas, I.: Daily living activity recognition based on statistical feature quality group selection. Expert Syst. Appl. 39(9), 8013–8021 (2012)

    Article  Google Scholar 

  5. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24646-6_1

    Chapter  Google Scholar 

  6. Baretta, D., Sartori, F., Greco, A., Melen, R., Stella, F., Bollini, L., D’addario, M., Steca, P.: Wearable devices and AI techniques integration to promote physical activity. In: Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct, pp. 1105–1108. ACM (2016)

    Google Scholar 

  7. Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M.B.: Participatory sensing. In: Workshop on World-Sensor-Web (WSW 2006): Mobile Device Centric Sensor Networks and Applications, pp. 117–134 (2006)

    Google Scholar 

  8. Cardone, G., Cirri, A., Corradi, A., Foschini, L., Maio, D.: MSF: an efficient mobile phone sensing framework. Int. J. Distrib. Sens. Netw. 9(3), 538937 (2013). http://dx.doi.org/10.1155/2013/538937

  9. Cardone, G., Corradi, A., Foschini, L., Ianniello, R.: Participact: a large-scale crowdsensing platform. IEEE Trans. Emerg. Topics Comput. 4(1), 21–32 (2016)

    Article  Google Scholar 

  10. Cottone, P., Gaglio, S., Lo Re, G., Ortolani, M.: User activity recognition for energy saving in smart homes. Pervasive Mob. Comput. 16(PA), 156–170 (2015)

    Google Scholar 

  11. Cottone, P., Lo Re, G., Maida, G., Morana, M.: Motion sensors for activity recognition in an ambient-intelligence scenario. In: 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 646–651 (2013)

    Google Scholar 

  12. Cvetković, B., Janko, V., Romero, A.E., Kafalı, Ö., Stathis, K., Luštrek, M.: Activity recognition for diabetic patients using a smartphone. J. Med. Syst. 40(12), 256 (2016)

    Article  Google Scholar 

  13. De Paola, A., La Cascia, M., Lo Re, G., Morana, M., Ortolani, M.: Mimicking biological mechanisms for sensory information fusion. Biol. Inspired Cogn. Archit. 3, 27–38 (2013)

    Google Scholar 

  14. Gaglio, S., Lo Re, G., Morana, M.: Human activity recognition process using 3-D posture data. IEEE Trans. Hum.-Mach. Syst. 45(5), 586–597 (2015)

    Article  Google Scholar 

  15. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2 edn. Springer, Heidelberg (2009). https://doi.org/10.1007/978-0-387-84858-7

  16. Hwang, S., Ryu, M., Yang, Y., Lee, N.: Fall detection with three-axis accelerometer and magnetometer in a smartphone. In: Proceedings of the International Conference on Computer Science and Technology, Jeju, Korea, pp. 25–27 (2012)

    Google Scholar 

  17. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning: With Applications in R. Springer Publishing Company, Heidelberg (2014). https://doi.org/10.1007/978-1-4614-7138-7

    MATH  Google Scholar 

  18. Kwon, Y., Kang, K., Bae, C.: Unsupervised learning for human activity recognition using smartphone sensors. Expert Syst. Appl. 41(14), 6067–6074 (2014)

    Article  Google Scholar 

  19. Lester, J., Choudhury, T., Borriello, G.: A practical approach to recognizing physical activities. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) Pervasive 2006. LNCS, vol. 3968, pp. 1–16. Springer, Heidelberg (2006). https://doi.org/10.1007/11748625_1

    Chapter  Google Scholar 

  20. Lo Re, G., Morana, M., Ortolani, M.: Improving user experience via motion sensors in an ambient intelligence scenario. In: Proceedings of the 3rd International Conference on Pervasive Embedded Computing and Communication Systems, PECCS, vol. 1, pp. 29–34. INSTICC, SciTePress (2013)

    Google Scholar 

  21. Manzi, A., Dario, P., Cavallo, F.: A human activity recognition system based on dynamic clustering of skeleton data. Sensors 17(5), 1100 (2017)

    Article  Google Scholar 

  22. Munther, A., Razif, R., AbuAlhaj, M., Anbar, M., Nizam, S.: A preliminary performance evaluation of K-means, KNN and EM unsupervised machine learning methods for network flow classification. J. Electr. Comput. Eng. 6(2), 778–784 (2016)

    Google Scholar 

  23. Paola, A.D., La Cascia, M., Lo Re, G., Morana, M., Ortolani, M.: User detection through multi-sensor fusion in an AmI scenario. In: 2012 15th International Conference on Information Fusion, pp. 2502–2509 (2012)

    Google Scholar 

  24. Park, S., Park, J., Al-masni, M., Al-antari, M., Uddin, M.Z., Kim, T.S.: A depth camera-based human activity recognition via deep learning recurrent neural network for health and social care services. Procedia Comput. Sci. 100, 78–84 (2016)

    Article  Google Scholar 

  25. Patel, S., Park, H., Bonato, P., Chan, L., Rodgers, M.: A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9(1), 21 (2012)

    Article  Google Scholar 

  26. Pinardi, S., Sartori, F., Melen, R.: Integrating knowledge artifacts and inertial measurement unit sensors for decision support. In: KMIS, pp. 307–313 (2016)

    Google Scholar 

  27. Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier, Amsterdam (2014)

    Google Scholar 

  28. Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. In: Aaai, vol. 5, pp. 1541–1546 (2005)

    Google Scholar 

  29. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)

    Article  Google Scholar 

  30. Subramanya, A., Raj, A., Bilmes, J.A., Fox, D.: Recognizing activities and spatial context using wearable sensors. arXiv preprint arXiv:1206.6869 (2012)

  31. Torres-Huitzil, C., Alvarez-Landero, A.: Accelerometer-based human activity recognition in smartphones for healthcare services. In: Adibi, S. (ed.) Mobile Health. Springer Series in Bio-/Neuroinformatics, pp. 147–169. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-12817-7_7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Morana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Concone, F., Gaglio, S., Lo Re, G., Morana, M. (2017). Smartphone Data Analysis for Human Activity Recognition. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds) AI*IA 2017 Advances in Artificial Intelligence. AI*IA 2017. Lecture Notes in Computer Science(), vol 10640. Springer, Cham. https://doi.org/10.1007/978-3-319-70169-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70169-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70168-4

  • Online ISBN: 978-3-319-70169-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics