Skip to main content

Application of k-Step Random Walk Paths to Graph Kernel for Automatic Patent Classification

  • Conference paper
  • First Online:
Digital Libraries: Data, Information, and Knowledge for Digital Lives (ICADL 2017)

Abstract

In this study, we focus on utilizing the patent citation graph structure. We investigate the effect of using only one document feature which is patent class along citation graph for the classification task. We collect advantages of a kernel-based method and build kernel function to represent feature and citation associated information. We use k-step random walk paths algorithm to calculate kernel values of each patent pairwise and SVM classifier to do the classification task. We employ sub graph technique for a large patent graph to represent citation graph information. The method is based on the property of neighborhood in a graph. The evaluation of the k-step random walk paths kernel metrics on three datasets from the United States Patent and Trademark Office (USPTO) database shows that using patent citation graph structure with only one feature achieved better performance than previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.ibiblio.org/patents/classes.html.

  2. 2.

    https://goo.gl/aMX8pm.

References

  1. Abbas, A., Zhang, L., Khan, S.U.: A literature review on the state-of-the-art in patent analysis. World Pat. Inf. 37, 3–13 (2014)

    Article  Google Scholar 

  2. Hall, B.H., Jaffe, A.B., Trajtenberg, M.: The NBER Patent Citations Data File: Lessons, Insight and Methodological Tools (2001)

    Google Scholar 

  3. Kumar, R., Math, S., Tripathi, R.C., Tiwari, M.D.: Patent classification of the new invention using PLSA. In: Proceedings of the First International Conference on Intelligent Interactive Technologies and Multimedia, pp. 222–225 (2010)

    Google Scholar 

  4. Nguyen, H.M., Phan, C.P., Nguyen, H.Q.: GeTCo: an ontology-based approach for patent classification search. In: iiWAS 2016 Proceedings of the 18th International Conference on Information Integration and Web-based Applications and Services, pp. 241–244 (2016)

    Google Scholar 

  5. Shih, M.J., Liu, D.R.: Patent classification using ontology-based patent network analysis. In: Proceedings Pacific Asia Conference on Information Systems PACIS 2010, Taipei, pp. 962–972 (2010)

    Google Scholar 

  6. Li, X., Chen, H., Zhang, Z., Li, J.: Automatic patent classification using citation network information: an experimental study in nanotechnology. In: Proceedings of the 7th ACM/IEEE Joint Conference on Digital Libraries - Building & Sustaining the Digital Environment, pp. 419–427 (2007)

    Google Scholar 

  7. Liu, D.R., Shih, M.J.: Hybrid-patent classification based on patent-network analysis. J. Am. Soc. Inform. Sci. Technol. 62(2), 246–256 (2011)

    Article  Google Scholar 

  8. Stutzki, J., Schubert, M.: Geodata supported classification of patent applications. In: GeoRich 2016 Proceedings of the Third International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data, pp. 4:1–4:6 (2016)

    Google Scholar 

  9. Zhang, L., Li, L., Li, T.: Patent mining: a survey. ACM SIGKDD Explor. Newsl. 16(2), 1–19 (2015)

    Article  Google Scholar 

  10. Shalaby, W., Zadrozny, W.: Patent retrieval: a literature review. arXiv preprint, January 2017

    Google Scholar 

  11. Noh, H., Jo, Y., Lee, S.: Keyword selection and processing strategy for applying text mining to patent analysis. Expert Syst. Appl. 42(9), 4348–4360 (2015)

    Article  Google Scholar 

  12. D’hondt, E., Verberne, S., Koster, C., Boves, L.: Text representations for patent classification. Comput. Linguist. 39(3), 755–775 (2013)

    Article  Google Scholar 

  13. Fall, C.J., Torcsvari, A., Benzineb, K., Karetka, G.: Automated categorization in the international patent classification. ACM SIGIR Forum 37(1), 10–25 (2003)

    Article  Google Scholar 

  14. Li, Y., Bontcheva, K.: Adapting support vector machines for F-term-based classification of patents. ACM Trans. Asian Lang. Inf. Process. 7(2), 1–19 (2008)

    Article  Google Scholar 

  15. Wu, C.H., Ken, Y., Huang, T.: Patent classification system using a new hybrid genetic algorithm support vector machine. Appl. Soft Comput. 10(4), 1164–1177 (2010)

    Article  Google Scholar 

  16. Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1–9 (2006)

    Google Scholar 

  17. Diego, I.M.D., Muñoz, A., Moguerza, J.M.: Methods for the combination of kernel matrices within a support vector framework. Mach. Learn. 78(1–2), 137–174 (2010)

    Article  MathSciNet  Google Scholar 

  18. Sugiyama, M.: graphkernels: Graph Kernels. R package version 1.2 (2017)

    Google Scholar 

  19. Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A.: kernlab - an S4 package for kernel methods in R. J. Stat. Softw. 11(9), 1–20 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Budi Nugroho or Masayoshi Aritsugi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nugroho, B., Aritsugi, M. (2017). Application of k-Step Random Walk Paths to Graph Kernel for Automatic Patent Classification. In: Choemprayong, S., Crestani, F., Cunningham, S. (eds) Digital Libraries: Data, Information, and Knowledge for Digital Lives. ICADL 2017. Lecture Notes in Computer Science(), vol 10647. Springer, Cham. https://doi.org/10.1007/978-3-319-70232-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70232-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70231-5

  • Online ISBN: 978-3-319-70232-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics