Skip to main content

Vision Based Lidar Segmentation for Scan Matching and Camera Fusion

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10617))

  • 2821 Accesses

Abstract

A vision based algorithm brings fast segmentation process to a 2D lidar point cloud. The extracted features allow us to set up a segment based scan matcher. This matching is one of the steps for the localization. Features also give semantic information about the environment. The detection of a corner or a door indicates a potential encounter with human beings. Aware of this “danger” area, the robot will be able to adapt its speed and define areas of focus to the vision algorithms. Indeed, vision is known for its heavy computation load. The lidar gives a focus area in the image and will reduce the number of pixels to be analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El Hamzaoui, O.: Simultaneous Localization and Mapping for a mobile robot with a laser scanner: CoreSLAM. Theses, Ecole Nationale Supérieure des Mines de Paris, September 2012

    Google Scholar 

  2. Chang, C.-F., Tsai, C.-C., Hsu, J.-C., Lin, S.-C., Lin, C.-C.: Laser self-localization for a mobile robot using retro-reflector landmarks (2003)

    Google Scholar 

  3. De Cabrol, A., Garcia, T., Bonnin, P., Chetto, M.: A concept of dynamically reconfigurable real-time vision system for autonomous mobile robotics. Int. J. Autom. Comput. 5(2), 174–184 (2008)

    Article  Google Scholar 

  4. de Cabrol, A., Bonnin, P., Costis, T., Hugel, V., Blazevic, P., Bouchefra, K.: A new video rate region color segmentation and classification for sony legged RoboCup application. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS, vol. 4020, pp. 436–443. Springer, Heidelberg (2006). https://doi.org/10.1007/11780519_39

    Chapter  Google Scholar 

  5. Nguyen, V., Martinelli, A., Tomatis, N., Siegwart, R.: A comparison of line extraction algorithms using 2D laser rangefinder for indoor mobile robotics. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), pp. 1929–1934. IEEE (2005)

    Google Scholar 

  6. Bayer, K.: Wall following for autonomous navigation (2012)

    Google Scholar 

  7. Pavlidis, T.: Algorithms for graphics and image processing. LNCS. RoboCup 2005: Robot Soccer World Cup IX (1982)

    Google Scholar 

  8. Roumeliotis, S.I., Bekey, G.A.: Segments: a layered, dual-Kalman filter algorithm for indoor feature extraction. In: Proceedings of 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000), vol. 1, pp. 454–461. IEEE (2000)

    Google Scholar 

  9. Al Nachar, R.: Vers un efficace détecteur de trait: Les coins de contour et ses applications. Ph.D. thesis, Versailles-St Quentin en Yvelines (2014)

    Google Scholar 

  10. Wall, K., Danielsson, P.-E.: A fast sequential method for polygonal approximation of digitized curves. Comput. Vis. Graph. Image Process. 28(2), 220–227 (1984)

    Article  Google Scholar 

  11. Vincent, F.: Modelisation de l’environnement et localisation pour un véhicule. Master’s thesis, L’Institut National Polytechnique de Grenoble (1997)

    Google Scholar 

  12. Ohya, I., Kosaka, A., Kak, A.: Vision-based navigation by a mobile robot with obstacle avoidance using single-camera vision and ultrasonic sensing. IEEE Trans. Robot. Autom. 14(6), 969–978 (1998)

    Article  Google Scholar 

  13. Hieida, Y., Suenaga, T., Takemura, K., Takamatsu, J., Ogasawara, T.: Real-time scan-matching using L0-norm minimization under dynamic crowded environments. In: Proceedings of Fourth Workshop Planning, Perception & Navigation for Intelligent Vehicles, pp. 257–262 (2012)

    Google Scholar 

  14. Olson, E.B.: Real-time correlative scan matching. In: IEEE International Conference on Robotics and Automation, 2009. ICRA 2009, pp. 4387–4393. IEEE (2009)

    Google Scholar 

  15. Vath, P., Ummenhofer, B.: 2D multi-resolution correlative scan matching using a polygon-based similarity measurement (2010)

    Google Scholar 

  16. Berger, C.: Toward rich geometric map for SLAM: online detection of planes in 2D LIDAR. J. Autom. Mob. Robot. Intell. Syst. 7, 35–41 (2013)

    Google Scholar 

  17. Censi, A.: On achievable accuracy for range-finder localization. In: 2007 IEEE International Conference on Robotics and Automation, ICRA 2007, 10–14 April 2007, Roma, Italy, pp. 4170–4175 (2007)

    Google Scholar 

  18. Burtin, G., Malartre, F., Chapuis, R.: Reducing the implementation uncertainty using an advanced robotic simulator. Machine Control and Guidance (MCG) (2016)

    Google Scholar 

  19. Censi, A.: An ICP variant using a point-to-line metric. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA, May 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Burtin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Burtin, G., Bonnin, P., Malartre, F. (2017). Vision Based Lidar Segmentation for Scan Matching and Camera Fusion. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2017. Lecture Notes in Computer Science(), vol 10617. Springer, Cham. https://doi.org/10.1007/978-3-319-70353-4_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70353-4_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70352-7

  • Online ISBN: 978-3-319-70353-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics