Abstract
While literature portals in the biomedical domain already enhance their search applications with ontological concepts, data portals offering biological primary data still use a classical keyword search. Similar to publications, biological primary data are described along meta information such as author, title, location and time which is stored in a separate file in XML format. Here, we introduce a semantic search for biological data based on metadata files. The search is running over 4.6 million datasets from GFBio - The German Federation for Biological Data (GFBio, https://www.gfbio.org), a national infrastructure for long-term preservation of biological data. The semantic search method used is query expansion. Instead of looking for originally entered keywords the search terms are expanded with related concepts from different biological vocabularies. Hosting our own Terminology Service with vocabularies that are tailored to the datasets, we demonstrate how ontological concepts are integrated into the search and how it improves the search result.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
GBIF, http://www.gbif.org/.
- 2.
Data One, https://dataone.org/.
- 3.
Dryad, https://datadryad.org/.
- 4.
PANGAEA, https://www.pangaea.de/.
- 5.
BGBM, https://www.bgbm.org/.
- 6.
- 7.
Elasticsearch, https://www.elastic.co.
- 8.
References
Buttigieg, P.L., Morrison, N., Smith, B., Mungall, C., Lewis, S., The ENVO Consortium: The environment ontology: contextualising biological and biomedical entities. J. Biomed. Semant. 4, 43 (2013)
Côté, R.G., Jones, P., Apweiler, R., Hermjakob, H.: The ontology lookup service, a lightweight cross-platform tool for controlled vocabulary queries. BMC Bioinform. 7, 97 (2006)
Diepenbroek, M., Glöckner, F., Grobe, P., Güntsch, A., Huber, R., König-Ries, B., Kostadinov, I., Nieschulze, J., Seeger, B., Tolksdorf, R., Triebel, D.: Towards an integrated biodiversity and ecological research data management and archiving platform: GFBio. In: Informatik (2014)
Dietze, H., Schroeder, M.: Goweb: a semantic search engine for the life science web. BMC Bioinform. 10(S-10), 7 (2009)
Faessler, E., Hahn, U.: Semedico: a comprehensive semantic search engine for the life sciences. In: ACL 2017 - Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Vancouver, Canada, July 30–August 4 2017
Frenzel, M., Dussl, F., Höhne, R., Nickels, V., Creutzburg, F.: Wild bee monitoring in six agriculturally dominated landscapes of Saxony-Anhalt (Germany) (2014). https://doi.org/10.1594/PANGAEA.865100. In: Frenzel, M., Preiser, C., Dussl, F., Höhne, R., Nickels, V., Creutzburg, F.: (2016): TERENO (Terrestrial Environmental Observatories) wild bee monitoring in six agriculturally dominated landscapes of Saxony-Anhalt (Germany). Helmholtz Centre for Environmental Research - UFZ. https://doi.org/10.1594/PANGAEA.864908
Karam, N., Müller-Birn, C., Gleisberg, M., Fichtmüller, D., Tolksdorf, R., Güntsch, A.: A terminology service supporting semantic annotation, integration, discovery and analysis of interdisciplinary research data. Datenbank-Spektrum 16(3), 195–205 (2016)
Löffler, F., Klan, F.: Does term expansion matter for the retrieval of biodiversity data? In: Martin, M., Cuquet, M., Folmer, E. (eds.) Joint Proceedings of the Posters and Demos Track of the 12th International Conference on Semantic Systems (SEMANTiCS 2016). CEUR Workshop Proceedings (2016)
Noy, N., Shah, N., Whetzel, P., Dai, B., Dorf, M., Griffith, N., Jonquet, C., Rubin, D., Storey, M., Chute, C., Musen, M.: Bioportal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res. 37(Web-Server-Issue), 170–173 (2009)
Acknowledgements
This work was funded by the Deutsche Forschungsgemeinschaft (DFG) within the scope of the GFBio project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Löffler, F. et al. (2017). Honey Bee Versus Apis Mellifera: A Semantic Search for Biological Data. In: Blomqvist, E., Hose, K., Paulheim, H., Ławrynowicz, A., Ciravegna, F., Hartig, O. (eds) The Semantic Web: ESWC 2017 Satellite Events. ESWC 2017. Lecture Notes in Computer Science(), vol 10577. Springer, Cham. https://doi.org/10.1007/978-3-319-70407-4_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-70407-4_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70406-7
Online ISBN: 978-3-319-70407-4
eBook Packages: Computer ScienceComputer Science (R0)