Abstract
This paper investigates a method based on Conditional Random Fields (CRFs) to incorporate sentence structure (syntax and semantics) and context information to identify sentiments of sentences. It also demonstrates the usefulness of the Rhetorical Structure Theory (RST) taking into consideration the discourse role of text segments. Thus, this paper’s aim is to reconsider the effectiveness of CRF and RST methods in incorporating the contextual information into Sentiment Analysis systems. Both methods are evaluated on two, different in size and genre of information sources, the Movie Review Dataset and the Finegrained Sentiment Dataset (FSD). Finally, we discuss the lessons learned from these experimental settings w.r.t. addressing the following key research questions such as whether there is an appropriate type of social media repository to incorporate contextual information, whether extending the pool of the selected features could improve context incorporation into SA systems and which is the best performing feature combination to achieve such improved performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For our experimental setting, we randomly split each collection into a training and a test set of 75% and 25% respectively.
- 2.
- 3.
- 4.
This could be explained by the fact that we tend to use subjective sentences in specific parts of the document e.g. in the beginning or at the end of the document.
References
Appel, O., Chiclana, F., Carter, J.: Main concepts, state of the art and future research questions in sentiment analysis. Acta Polytech. Hung. 12(3), 87–108 (2015)
Palmero Aprosio, A., Corcoglioniti, F., Dragoni, M., Rospocher, M.: Supervised opinion frames detection with RAID. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 251–263. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25518-7_22
Bal, D., Bal, M., Bunningen, A., Hogenboom, A., Hogenboom, F., Frasincar, F.: Sentiment analysis with a multilingual pipeline. In: Bouguettaya, A., Hauswirth, M., Liu, L. (eds.) WISE 2011. LNCS, vol. 6997, pp. 129–142. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24434-6_10
Beineke, P., Hastie, T., Manning, C., Vaithyanathan, S.: Exploring sentiment summarization. In: Proceedings of the AAAI Spring Symposium on Exploring Attitude and Affect in Text: Theories and Applications, vol. 39 (2004)
Choi, Y., Cardie, C., Riloff, E., Patwardhan, S.: Identifying sources of opinions with conditional random fields and extraction patterns. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 355–362. Association for Computational Linguistics (2005)
Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391 (1990)
Dragoni, M., Tettamanzi, A.G., Pereira, C.D.C.: Dranziera: an evaluation protocol for multi-domain opinion mining. In: 10th International Conference on Language Resources and Evaluation (LREC 2016), pp. 267–272. European Language Resources Association (ELRA) (2016)
Federici, M., Dragoni, M.: Towards unsupervised approaches for aspects extraction
Federici, M., Dragoni, M.: A knowledge-based approach for aspect-based opinion mining. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 141–152. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46565-4_11
Feldman, R.: Techniques and applications for sentiment analysis. Commun. ACM 56(4), 82–89 (2013)
Gangemi, A., Presutti, V., Recupero, D.R.: Frame-based detection of opinion holders and topics: a model and a tool. IEEE Comput. Intell. Mag. 9(1), 20–30 (2014)
Hatzivassiloglou, V., McKeown, K.R.: Predicting the semantic orientation of adjectives. In: 35th Annual Meeting of the Association for Computational Linguistics and 8th Conference of the European Chapter of the Association for Computational Linguistics, pp. 174–181. ACL (1997)
Heerschop, B., Goossen, F., Hogenboom, A., Frasincar, F., Kaymak, U., de Jong, F.: Polarity analysis of texts using discourse structure. In: 20th International Conference on Information and Knowledge Management, pp. 1061–1070. ACM (2011)
Hogenboom, A., Hogenboom, F., Frasincar, F., Schouten, K., van der Meer, O.: Semantics-based information extraction for detecting economic events. Multimedia Tools Appl. 64(1), 27–52 (2013)
Jakob, N., Gurevych, I.: Extracting opinion targets in a single-and cross-domain setting with conditional random fields. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1035–1045. Association for Computational Linguistics (2010)
Ji, Y., Eisenstein, J.: Representation learning for text-level discourse parsing. In: ACL (1), pp. 13–24 (2014)
Katz, G., Ofek, N., Shapira, B.: Consent: context-based sentiment analysis. Knowl. Based Syst. 84, 162–178 (2015)
Kim, S.M., Hovy, E.: Automatic identification of pro and con reasons in online reviews. In: Proceedings of the COLING/ACL on Main Conference Poster Sessions, pp. 483–490. Association for Computational Linguistics (2006)
Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning ICML, vol. 1, pp. 282–289 (2001)
Mann, W.C., Thompson, S.A.: Rhetorical structure theory: toward a functional theory of text organization. Text-Interdisc. J. Study Discourse 8(3), 243–281 (1988)
Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The stanford corenlp natural language processing toolkit. In: ACL (System Demonstrations), pp. 55–60 (2014)
McCallum, A.: Efficiently inducing features of conditional random fields. In: Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence, pp. 403–410. Morgan Kaufmann Publishers Inc. (2002)
Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, p. 271. Association for Computational Linguistics (2004)
Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retrieval 2(1–2), 1–135 (2008)
Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL 2002 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86. Association for Computational Linguistics (2002)
Recupero, D.R., Presutti, V., Consoli, S., Gangemi, A., Nuzzolese, A.G.: Sentilo: frame-based sentiment analysis. Cognitive Comput. 7(2), 211–225 (2015)
Rexha, A., Kröll, M., Dragoni, M., Kern, R.: Exploiting propositions for opinion mining. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 121–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46565-4_9
Rexha, A., Kröll, M., Dragoni, M., Kern, R.: Polarity classification for target phrases in tweets: a word2Vec approach. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 217–223. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47602-5_40
Soricut, R., Marcu, D.: Sentence level discourse parsing using syntactic and lexical information. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, vol. 1, pp. 149–156. Association for Computational Linguistics (2003)
Stone, P.J., Dunphy, D.C., Smith, M.S.: The General Inquirer: A Computer Approach to Content Analysis. MIT Press, Cambridge (1966)
Taboada, M., Voll, K., Brooke, J.: Extracting sentiment as a function of discourse structure and topicality. Simon Fraser Univeristy School of Computing Science Technical Report (2008)
Täckström, O., McDonald, R.: Discovering fine-grained sentiment with latent variable structured prediction models. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 368–374. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20161-5_37
Turney, P.D.: Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 417–424. Association for Computational Linguistics (2002)
Wiebe, J., Riloff, E.: Creating subjective and objective sentence classifiers from unannotated texts. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 486–497. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30586-6_53
Wiebe, J., Wilson, T., Cardie, C.: Annotating expressions of opinions and emotions in language. Lang. Resour. Eval. 39(2–3), 165–210 (2005)
Zirn, C., Niepert, M., Stuckenschmidt, H., Strube, M.: Fine-grained sentiment analysis with structural features. In: IJCNLP, pp. 336–344 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Vlachostergiou, A., Marandianos, G., Kollias, S. (2017). From Conditional Random Field (CRF) to Rhetorical Structure Theory(RST): Incorporating Context Information in Sentiment Analysis. In: Blomqvist, E., Hose, K., Paulheim, H., Ławrynowicz, A., Ciravegna, F., Hartig, O. (eds) The Semantic Web: ESWC 2017 Satellite Events. ESWC 2017. Lecture Notes in Computer Science(), vol 10577. Springer, Cham. https://doi.org/10.1007/978-3-319-70407-4_38
Download citation
DOI: https://doi.org/10.1007/978-3-319-70407-4_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70406-7
Online ISBN: 978-3-319-70407-4
eBook Packages: Computer ScienceComputer Science (R0)