Abstract
In this paper we present AMR2FRED, a software application to translate Abstract Meaning Representation (AMR) to RDF using the knowledge patterns applied by the FRED machine reading method. AMR and FRED representations are both graph-based, and event-centric (neo-Davidsonian), but they differ in several logical, conceptual, and design assumptions. The former has become a de facto standard for the Natural Language Processing community, whereas FRED adds semantics to the extracted information using several ontologies and best practices from the Semantic Web. With the increasing availability of manually AMR-annotated datasets, this tool provides straightforward means to adapt annotated datasets for AMR according to the design patterns used by FRED, and to evaluate machine reading tools with gold-standard data. AMR2FRED takes as input an AMR representation of a text, and prints a FRED-like RDF output. The system is open source and can be freely downloaded from https://github.com/infovillasimius/amr2Fred.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
The resource we have used, predmatrix.txt, is included in the github of AMR2FRED.
- 4.
References
Artzi, Y., Lee, K., Zettlemoyer, L.: Broad-coverage CCG semantic parsing with AMR. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, pp. 1699–1710 (2015)
Chen, W.-T.: Learning to map dependency parses to abstract meaning representations. In: Proceedings of the ACL-IJCNLP 2015 Student Research Workshop, Beijing, pp. 41–46 (2015)
Pust, M., Hermjakob, U., Knight, K., Marcu, D., May, J.: Parsing English into abstract meaning representation using syntax-based machine translation. In: Proceedings of the EMNLP 2015, Lisbon, pp. 1143–1154 (2015)
Peng, X., Song, L., Gildea, D.: A synchronous hyperedge replacement grammar based approach for AMR parsing. In: Proceedings of the Nineteenth Conference on Computational Natural Language Learning, Beijing, pp. 32–41 (2015)
Sawai, Y., Shindo, H., Matsumoto, Y.: Semantic structure analysis of noun phrases using abstract meaning representation. In: Proceedings of the 53rd Annual Meeting of the ACL (Short Papers), Beijing, vol. 2, pp 851–856 (2015)
Werling, K., Angeli, G., Manning, C.D.: Robust subgraph generation improves abstract meaning representation parsing. In: Proceedings of the 53rd Annual Meeting of the ACL (Long Papers), Beijing, vol. 1, pp. 982–991 (2015)
Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K., Koehn, P., Palmer, M., Schneider, N.: Abstract meaning representation for sembanking. In: Proceedings ACL Linguistic Annotation Workshop (LAW) (2013)
Kamp, H.: A theory of truth and semantic representation. In: Groenendijk, J.A.G., Janssen, T.M.V., Stokhof, M.B.J. (eds.) Formal Methods in the Study of Language, Part I, pp. 277–322. Mathematisch Centrum (1981)
Gangemi, A., Presutti, V., Reforgiato Recupero, D., Nuzzolese, A.G., Draicchio, F., Mongioví, M.: Semantic web machine reading with FRED. Semant. Web J. (2016). https://doi.org/10.3233/SW-160240
Peroni, S., Gangemi, A., Vitali, F.: Dealing with markup semantics. In: Proceedings of the 7th International Conference on Semantic Systems, Graz, Austria, pp. 111–118. ACM (2011)
Hellmann, S., Lehmann, J., Auer, S., Brümmer, M.: Integrating NLP using linked data. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 98–113. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41338-4_7
Gangemi, A., Mongiovi, M., Nuzzolese, A.G., Presutti, V., Reforgiato, D.: Identifying motifs for evaluating open knowledge extraction on the web. Knowl.-Based Syst. 108, 33–41 (2016)
Gangemi, A.: A comparison of knowledge extraction tools for the semantic web. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 351–366. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38288-8_24
Gangemi, A., Nuzzolese, A.G., Presutti, V., Reforgiato, D.: Adjective semantics in open knowledge extraction. In: Formal Ontology in Information Systems Conference (FOIS 2106). IOS Press (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Meloni, A., Reforgiato Recupero, D., Gangemi, A. (2017). AMR2FRED, A Tool for Translating Abstract Meaning Representation to Motif-Based Linguistic Knowledge Graphs. In: Blomqvist, E., Hose, K., Paulheim, H., Ławrynowicz, A., Ciravegna, F., Hartig, O. (eds) The Semantic Web: ESWC 2017 Satellite Events. ESWC 2017. Lecture Notes in Computer Science(), vol 10577. Springer, Cham. https://doi.org/10.1007/978-3-319-70407-4_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-70407-4_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70406-7
Online ISBN: 978-3-319-70407-4
eBook Packages: Computer ScienceComputer Science (R0)