Skip to main content

AMR2FRED, A Tool for Translating Abstract Meaning Representation to Motif-Based Linguistic Knowledge Graphs

  • Conference paper
  • First Online:
The Semantic Web: ESWC 2017 Satellite Events (ESWC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10577))

Included in the following conference series:

  • 1290 Accesses

Abstract

In this paper we present AMR2FRED, a software application to translate Abstract Meaning Representation (AMR) to RDF using the knowledge patterns applied by the FRED machine reading method. AMR and FRED representations are both graph-based, and event-centric (neo-Davidsonian), but they differ in several logical, conceptual, and design assumptions. The former has become a de facto standard for the Natural Language Processing community, whereas FRED adds semantics to the extracted information using several ontologies and best practices from the Semantic Web. With the increasing availability of manually AMR-annotated datasets, this tool provides straightforward means to adapt annotated datasets for AMR according to the design patterns used by FRED, and to evaluate machine reading tools with gold-standard data. AMR2FRED takes as input an AMR representation of a text, and prints a FRED-like RDF output. The system is open source and can be freely downloaded from https://github.com/infovillasimius/amr2Fred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://wit.istc.cnr.it/stlab-tools/fred.

  2. 2.

    https://github.com/amrisi/amr-guidelines/blob/master/amr.md.

  3. 3.

    The resource we have used, predmatrix.txt, is included in the github of AMR2FRED.

  4. 4.

    https://jena.apache.org/.

References

  1. Artzi, Y., Lee, K., Zettlemoyer, L.: Broad-coverage CCG semantic parsing with AMR. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, pp. 1699–1710 (2015)

    Google Scholar 

  2. Chen, W.-T.: Learning to map dependency parses to abstract meaning representations. In: Proceedings of the ACL-IJCNLP 2015 Student Research Workshop, Beijing, pp. 41–46 (2015)

    Google Scholar 

  3. Pust, M., Hermjakob, U., Knight, K., Marcu, D., May, J.: Parsing English into abstract meaning representation using syntax-based machine translation. In: Proceedings of the EMNLP 2015, Lisbon, pp. 1143–1154 (2015)

    Google Scholar 

  4. Peng, X., Song, L., Gildea, D.: A synchronous hyperedge replacement grammar based approach for AMR parsing. In: Proceedings of the Nineteenth Conference on Computational Natural Language Learning, Beijing, pp. 32–41 (2015)

    Google Scholar 

  5. Sawai, Y., Shindo, H., Matsumoto, Y.: Semantic structure analysis of noun phrases using abstract meaning representation. In: Proceedings of the 53rd Annual Meeting of the ACL (Short Papers), Beijing, vol. 2, pp 851–856 (2015)

    Google Scholar 

  6. Werling, K., Angeli, G., Manning, C.D.: Robust subgraph generation improves abstract meaning representation parsing. In: Proceedings of the 53rd Annual Meeting of the ACL (Long Papers), Beijing, vol. 1, pp. 982–991 (2015)

    Google Scholar 

  7. Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K., Koehn, P., Palmer, M., Schneider, N.: Abstract meaning representation for sembanking. In: Proceedings ACL Linguistic Annotation Workshop (LAW) (2013)

    Google Scholar 

  8. Kamp, H.: A theory of truth and semantic representation. In: Groenendijk, J.A.G., Janssen, T.M.V., Stokhof, M.B.J. (eds.) Formal Methods in the Study of Language, Part I, pp. 277–322. Mathematisch Centrum (1981)

    Google Scholar 

  9. Gangemi, A., Presutti, V., Reforgiato Recupero, D., Nuzzolese, A.G., Draicchio, F., Mongioví, M.: Semantic web machine reading with FRED. Semant. Web J. (2016). https://doi.org/10.3233/SW-160240

  10. Peroni, S., Gangemi, A., Vitali, F.: Dealing with markup semantics. In: Proceedings of the 7th International Conference on Semantic Systems, Graz, Austria, pp. 111–118. ACM (2011)

    Google Scholar 

  11. Hellmann, S., Lehmann, J., Auer, S., Brümmer, M.: Integrating NLP using linked data. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 98–113. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41338-4_7

    Chapter  Google Scholar 

  12. Gangemi, A., Mongiovi, M., Nuzzolese, A.G., Presutti, V., Reforgiato, D.: Identifying motifs for evaluating open knowledge extraction on the web. Knowl.-Based Syst. 108, 33–41 (2016)

    Article  Google Scholar 

  13. Gangemi, A.: A comparison of knowledge extraction tools for the semantic web. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 351–366. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38288-8_24

    Chapter  Google Scholar 

  14. Gangemi, A., Nuzzolese, A.G., Presutti, V., Reforgiato, D.: Adjective semantics in open knowledge extraction. In: Formal Ontology in Information Systems Conference (FOIS 2106). IOS Press (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Reforgiato Recupero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meloni, A., Reforgiato Recupero, D., Gangemi, A. (2017). AMR2FRED, A Tool for Translating Abstract Meaning Representation to Motif-Based Linguistic Knowledge Graphs. In: Blomqvist, E., Hose, K., Paulheim, H., Ławrynowicz, A., Ciravegna, F., Hartig, O. (eds) The Semantic Web: ESWC 2017 Satellite Events. ESWC 2017. Lecture Notes in Computer Science(), vol 10577. Springer, Cham. https://doi.org/10.1007/978-3-319-70407-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70407-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70406-7

  • Online ISBN: 978-3-319-70407-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics