Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 717))

  • 501 Accesses

Abstract

In this paper we propose an algorithm, Simple Hebbian PCA, and prove that it is able to calculate the principal component analysis (PCA) in a distributed fashion across nodes. It simplifies existing network structures by removing intralayer weights, essentially cutting the number of weights that need to be trained in half.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Khanda, D. Salikhov, K. Gusmanov, M. Mazzara, N. Mavridis, Microservice-based iot for smart buildings, in 31st International Conference on Advanced Information Networking and Applications Workshops, AINA 2017 Workshops, Taipei, Taiwan, 27–29 March 2017, pp. 302–308

    Google Scholar 

  2. D. Salikhov, K. Khanda, K. Gusmanov, M. Mazzara, N. Mavridis, Jolie good buildings: Internet of things for smart building infrastructure supporting concurrent apps utilizing distributed microservices, in Selected Papers of the First International Scientific Conference Convergent Cognitive Information Technologies (Convergent 2016), pp. 48–53

    Google Scholar 

  3. T. Soyata, R. Muraleedharan, J. Langdon, C. Funai, S. Ames, M. Kwon, W. Heinzelman, Combat: mobile-cloud-based compute/communications infrastructure for battlefield applications, vol. 8403 (2012), pp. 84030K–84030K–13

    Google Scholar 

  4. C. Kruger, G.P. Hancke, Implementing the internet of things vision in industrial wireless sensor networks, in 2014 12th IEEE International Conference on Industrial Informatics (INDIN) (IEEE, 2014), pp. 627–632

    Google Scholar 

  5. L. Johard, E. Ruffaldi, A connectionist actor-critic algorithm for faster learning and biological plausibility, in 2014 IEEE International Conference on Robotics and Automation, ICRA 2014, Hong Kong, China, 31 May–7 June 2014 (IEEE, 2014), pp. 3903–3909

    Google Scholar 

  6. J. Qiu, H. Wang, J. Lu, B. Zhang, K.-L. Du, Neural network implementations for pca and its extensions. ISRN Artif. Intell. 2012 (2012)

    Google Scholar 

  7. E. Oja, Simplified neuron model as a principal component analyzer. J. Math. Biol. 15(3), 267–273 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. T.D. Sanger, Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Netw. 2(6), 459–473 (1989)

    Article  Google Scholar 

  9. Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)

    Article  Google Scholar 

  10. J. Rubner, P. Tavan, A self-organizing network for principal-component analysis. EPL Europhys. Lett. 10(7), 693 (1989)

    Article  Google Scholar 

  11. S. Kung, K. Diamantaras, A neural network learning algorithm for adaptive principal component extraction (apex), in International Conference on Acoustics, Speech, and Signal Processing (IEEE, 1990), pp. 861–864

    Google Scholar 

  12. C. Pehlevan, T. Hu, D.B. Chklovskii, A hebbian/anti-hebbian neural network for linear subspace learning: a derivation from multidimensional scaling of streaming data, Neural computation (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Mazzara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Johard, L., Rivera, V., Mazzara, M., Lee, J.Y. (2018). Self-adaptive Node-Based PCA Encodings. In: Ciancarini, P., Litvinov, S., Messina, A., Sillitti, A., Succi, G. (eds) Proceedings of 5th International Conference in Software Engineering for Defence Applications. SEDA 2016. Advances in Intelligent Systems and Computing, vol 717. Springer, Cham. https://doi.org/10.1007/978-3-319-70578-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70578-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70577-4

  • Online ISBN: 978-3-319-70578-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics