Skip to main content

Sub-Coalitional Approach to Values

  • Chapter
  • First Online:
Transactions on Computational Collective Intelligence XXVII

Part of the book series: Lecture Notes in Computer Science ((TCCI,volume 10480))

Abstract

The behavioral models of classical values (like the Shapley and Banzhaf values) consider the contributions to coalition S as contributions delivered by the players individually joining such a coalition as it is being formed; i.e., v(S) – v(S \ {i}). In this paper, we propose another approach to values where these contributions are considered as given by sets of players: (v(S) – v(S \ R)), where S, R are subsets of the set of all players involved in cooperative game v. Based on this new approach, several sub-coalitional values are proposed, and some properties of these values are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gambarelli, G.: Value of a game. In: Dowding, K. (ed.) Encyclopedia of Power, pp. 683–684. SAGE Publications, Los Angeles (2011)

    Google Scholar 

  2. Shapley, L.S.: A value for n-person games. In: Tucker, A.W., Kuhn, H.W. (eds.) Contributions to the Theory of Games II, pp. 307–317. Princeton University Press, Princeton (1953)

    Google Scholar 

  3. Banzhaf, J.F.: Weighted voting doesn’t work: a mathematical analysis. Rutgers Law Rev. 19, 317–343 (1965)

    Google Scholar 

  4. Lucas, J.F.: Introduction to abstract mathematics. Ardsley House Publishers Inc., New York (1990)

    Google Scholar 

  5. Abramowitz, M., Stegun, I.A. (eds.): Stirling numbers of the second kind. In: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, pp. 824–825. Dover, New York (1972)

    Google Scholar 

  6. Bertini, C., Stach, I.: Banzhaf voting power measure. In: Dowding, K. (ed.) Encyclopedia of Power, pp. 54–55. SAGE Publications, Los Angeles (2011)

    Google Scholar 

  7. Bertini, C.: Shapley value. In: Dowding, K. (ed.) Encyclopedia of power, pp. 600–603. SAGE Publications, Los Angeles (2011)

    Google Scholar 

  8. Tijs, S.H.: Bounds for the core and the τ-value. In: Moeschlin, O., Pallaschke, D. (eds.) Game Theory and Mathematical Economics, pp. 123–132. North Holland, Amsterdam (1981)

    Google Scholar 

  9. Driessen, T.S.H., Tijs, S.H.: Extensions and modifications of the τ-value for cooperative games. In: Hammer, G., Pallaschke, D. (eds.) Selected Topics in Operations Research and Mathematical Economics. Lecture Notes in Economics and Mathematical Systems, vol. 226, pp. 252–261. Springer, Heidelberg (1984). https://doi.org/10.1007/978-3-642-45567-4_18

    Chapter  Google Scholar 

  10. Tijs, S.H.: An axiomatization of the τ-value. Math. Soc. Sci. 13, 177–181 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Stach, I.: Tijs value. In: Dowding, K. (ed.) Encyclopedia of Power, pp. 667–670. SAGE Publications, Los Angeles (2011)

    Google Scholar 

  12. Malawski, M.: “Procedural” values for cooperative games. Int. J. Game Theor. 42(1), 305–324 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Holler, M.J., Li, X.: From public good index to public value. an axiomatic approach and generalization. Control Cybern. 24(3), 257–270 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Bertini, C., Stach, I.: On public values and power indices. Decis. Making Manuf. Serv. 9(1), 9–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Aumann, R.J., Drèze, J.: Cooperative games with coalition structures. Int. J. Game Theor. 3, 217–237 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Owen, G.: Values of games with a priori unions. In: Henn, R., Moeschlin, O. (eds.) Mathematical Economics and Game Theory. Lecture Notes in Economics and Mathematical Systems, vol. 141, pp. 76–88. Springer, Heidelberg (1977). https://doi.org/10.1007/978-3-642-45494-3_7

    Chapter  Google Scholar 

  17. Derks, J., Peters, H.: A Shapley value for games with restricted coalitions. Int. J. Game Theor. 21, 351–360 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Amer, R., Carreras, F.: Cooperation indices and weighted Shapley values. Math. Oper. Res. 22, 955–968 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Malawski, M.: Counting power indices for games with a priori unions. Theor. Decis. 56, 125–140 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mercik, J.W., Ramsey, D.: The effect of Brexit on the balance of power in the European Union Council: An approach based on pre-coalitions. In: Nguyen, N.T., et al. (eds.) TCCI XXVII, LNCS Transactions on Computational Collective Intelligence, vol. 10480, pp. 87–107. Springer, Cham (2017)

    Google Scholar 

  21. Grabisch, M., Roubens, M.: An axiomatic approach to the concept of interaction among players in cooperative games. Int. J. Game Theor. 28, 547–565 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research is financed by the statutory funds (no. 11/11.200.322) of the AGH University of Science and Technology. The author expresses gratitude to Gianfranco Gambarelli and Cesarino Bertini for useful suggestions and precious help.

The author also gratefully acknowledge the helpful comments and suggestions of two referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabella Stach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stach, I. (2017). Sub-Coalitional Approach to Values. In: Mercik, J. (eds) Transactions on Computational Collective Intelligence XXVII. Lecture Notes in Computer Science(), vol 10480. Springer, Cham. https://doi.org/10.1007/978-3-319-70647-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70647-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70646-7

  • Online ISBN: 978-3-319-70647-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics