Skip to main content

Learning Music Emotions via Quantum Convolutional Neural Network

  • Conference paper
  • First Online:
Brain Informatics (BI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10654))

Included in the following conference series:

Abstract

Music can convey and evoke powerful emotions. But it is very challenging to recognize the music emotions accurately by computational models. The difficulty of the problem can exponentially increase when the music segments delivery multiple and complex emotions. This paper proposes a novel quantum convolutional neural network (QCNN) to learn music emotions. Inheriting the distinguished abstraction ability from deep learning, QCNN automatically extracts the music features that benefit emotion classification. The main contribution of this paper is that we utilize measurement postulate to simulate the human emotion awareness in music appreciation. Statistical experiments on the standard dataset shows that QCNN outperforms the classical algorithms as well as the state-of-the-art in the task of music emotion classification. Moreover, we provide demonstration experiment to explain the good performance of the proposed technique from the perspective of physics and psychology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wieczorkowska, A., Synak, P., Lewis, R., Raś, Z.W.: Extracting emotions from music data. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 456–465. Springer, Heidelberg (2005). https://doi.org/10.1007/11425274_47

    Chapter  Google Scholar 

  2. Juslin, P.N., Västfjäll, D.: Emotional responses to music: the need to consider underlying mechanisms. Behav. Brain Sci. 31(05), 559–575 (2008)

    Google Scholar 

  3. Zentner, M., Grandjean, D., Scherer, K.R.: Emotions evoked by the sound of music: characterization, classification, and measurement. Emotion 8(4), 494 (2008)

    Article  Google Scholar 

  4. Eerola, T., Vuoskoski, J.K.: A comparison of the discrete and dimensional models of emotion in music. Psychol. Mus. 39, 18–49 (2010)

    Article  Google Scholar 

  5. Drever, J.: A Dictionary of Psychology. Oxford University Press, Oxford (1952)

    Google Scholar 

  6. Ekman, P.: Expression and the nature of emotion. In: Approaches to Emotion, vol. 3, pp. 19–344 (1984)

    Google Scholar 

  7. Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and retrieval of music and sound effects. IEEE Trans. Audio Speech Lang. Process. 16(2), 467–476 (2008)

    Article  Google Scholar 

  8. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980)

    Article  Google Scholar 

  9. Thayer, R.E.: The Biopsychology of Mood and Arousal. Oxford University Press, Oxford (1990)

    Google Scholar 

  10. Lu, L., Liu, D., Zhang, H.J.: Automatic mood detection and tracking of music audio signals. IEEE Trans. Audio Speech Lang. Process. 14(1), 5–18 (2006)

    Article  Google Scholar 

  11. Yang, Y.H., Lin, Y.C., Su, Y.F., Chen, H.H.: A regression approach to music emotion recognition. IEEE Trans. Audio Speech Lang. Process. 16(2), 448–457 (2008)

    Article  Google Scholar 

  12. Li, T., Ogihara, M.: Content-based music similarity search and emotion detection. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Proceedings, vol. 5, p. V-705. IEEE (2004)

    Google Scholar 

  13. Wu, B., Zhong, E., Horner, A., Yang, Q.: Music emotion recognition by multi-label multi-layer multi-instance multi-view learning. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 117–126. ACM (2014)

    Google Scholar 

  14. Panagakis, Y., Kotropoulos, C.: Automatic music tagging via parafac2. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 481–484. IEEE (2011)

    Google Scholar 

  15. Liu, Y., Liu, Y., Zhao, Y., Hua, K.A.: What strikes the strings of your heart? Feature mining for music emotion analysis. IEEE Trans. Affect. Comput. 6(3), 247–260 (2015)

    Article  Google Scholar 

  16. Chen, Y.A., Wang, J.C., Yang, Y.H., Chen, H.: Linear regression-based adaptation of music emotion recognition models for personalization. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2149–2153. IEEE (2014)

    Google Scholar 

  17. Weninger, F., Eyben, F., Schuller, B.: On-line continuous-time music mood regression with deep recurrent neural networks. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5412–5416. IEEE (2014)

    Google Scholar 

  18. Wang, X., Rosenblum, D., Wang, Y.: Context-aware mobile music recommendation for daily activities. In: Proceedings of the 20th ACM International Conference on Multimedia, pp. 99–108. ACM (2012)

    Google Scholar 

  19. Lin, J.C., Wei, W.L., Wang, H.M.: Demv-matchmaker: emotional temporal course representation and deep similarity matching for automatic music video generation. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2772–2776. IEEE (2016)

    Google Scholar 

  20. Wang, S.Y., Wang, J.C., Yang, Y.H., Wang, H.M.: Towards time-varying music auto-tagging based on cal500 expansion. In: 2014 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2014)

    Google Scholar 

  21. Van Rijsbergen, C.J.: The Geometry of Information Retrieval. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  22. Zuccon, G., Azzopardi, L.: Using the quantum probability ranking principle to rank interdependent documents. In: Gurrin, C., et al. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 357–369. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12275-0_32

    Chapter  Google Scholar 

  23. Zhao, X., Zhang, P., Song, D., Hou, Y.: A novel re-ranking approach inspired by quantum measurement. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 721–724. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20161-5_79

    Chapter  Google Scholar 

  24. Zhu, S., Wang, B., Liu, Y.: Using non-parametric quantum theory to rank images. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1049–1052. IEEE (2012)

    Google Scholar 

  25. Sordoni, A., Nie, J.Y., Bengio, Y.: Modeling term dependencies with quantum language models for IR. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 653–662. ACM (2013)

    Google Scholar 

  26. Xie, M., Hou, Y., Zhang, P., Li, J., Li, W., Song, D.: Modeling quantum entanglements in quantum language models. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence, pp. 1362–1368. AAAI Press (2015)

    Google Scholar 

  27. Bruza, P.D., Wang, Z., Busemeyer, J.R.: Quantum cognition: a new theoretical approach to psychology. Trends Cognit. Sci. 19(7), 383–393 (2015)

    Article  Google Scholar 

  28. Sakurai, J.J., Napolitano, J.: Modern Quantum Mechanics. Addison-Wesley, Reading (2011)

    Google Scholar 

  29. Bohr, N., et al.: The Quantum Postulate and the Recent Development of Atomic Theory, vol. 3. Printed in Great Britain by R. & R. Clarke, Limited (1928)

    Google Scholar 

  30. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in neural Information Processing Systems, pp. 681–687 (2001)

    Google Scholar 

  31. Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338–1351 (2006)

    Article  Google Scholar 

  32. Lo, H.Y., Wang, J.C., Wang, H.M., Lin, S.D.: Cost-sensitive stacking for audio tag annotation and retrieval. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2308–2311. IEEE (2011)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants 61373122 and Open Funding Project of Tianjin Key Laboratory of Cognitive Computing and Application. We thank Dr. Haidong Yuan for the helpful discussion on quantum mechanics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, G. et al. (2017). Learning Music Emotions via Quantum Convolutional Neural Network. In: Zeng, Y., et al. Brain Informatics. BI 2017. Lecture Notes in Computer Science(), vol 10654. Springer, Cham. https://doi.org/10.1007/978-3-319-70772-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70772-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70771-6

  • Online ISBN: 978-3-319-70772-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics