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Abstract. This paper proposes a novel solution for improving visual lo-
calization in an active fashion. The solution, based on artificial potential
field, associates each feature in the current image frame with an attrac-
tive or neutral potential energy. The resultant action drives the vehicle
towards the goal, while still favouring feature rich areas. Experimental
results with a mini quadrotor equipped with a downward looking camera
assess the performance of the proposed method.
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1 Introduction

To enable the deployment of autonomous Micro Aerial Vehicles (MAVs) in GPS-
denied environments or in scenarios where external systems such as motion track-
ing cameras are not available, the localization problem, that is, the problem of
estimating the pose of the MAV with respect to its environment, needs to be ad-
equately addressed. Research community has been focused in using lightweight
onboard sensors. Most effective solutions combine Visual Odometry (VO) algo-
rithms and inertial data within a filtering framework [1,2,3].

Basically, visual odometry aims at estimating the camera motion by taking
the motion of tracked features in two consecutive frames into consideration. Key-
point methods [4] extract features from salient image regions, to recover camera
pose using epipolar geometry. While direct methods [5,6] consider photometric
information at high frame rates for a robust pose estimation. For passive VO [7],
interest image regions are initialized and tracked as a consequence of navigation.
When visual cues are not available, the vision pipeline fails and state estimation
relies on model propagation and inertial data. Within few seconds, state esti-
mation error and uncertainty grows fast in time and vehicle may get lost, as is
illustrated in Fig. 1(a). There are several approaches in the literature, namely
active-SLAM [8,9], next-best-view [10,11] and planning under uncertainty [12,13]
that tackle this problem. The basic idea consists in adding visual information in
the motion planning and control loop to minimize state estimation uncertainty.

ar
X

iv
:1

70
9.

04
68

7v
1 

 [
cs

.R
O

] 
 1

4 
Se

p 
20

17
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Fig. 1: Localization may fail when not considering the perception pipeline in the
motion planning and control frameworks (a). The proposed solution computes
an actuation that drives the vehicle into feature rich zones, avoiding localization
failure. (b). Illustrations were made using V-REP by Coppelia Robotics.

Davison and Murray [8] define the main goal in active feature selection as
building a map of features, which helps localizing the robot rather than an end
result in itself. In that sense, Vidal-Calleja et al. [9] propose a control law that
drives the camera such that expected information gain is maximized. Sadat et
al. [10] propose a scoring function that takes into account the expected number
of features for a given camera’s viewpoint, using a mesh of triangles. Mostegel
et al. [11] propose a set of measurements, including geometric point quality and
recognition probability, to analyze the impact of possible camera motions, and
avoid localization loss.

Considering a known map (given a priori), the navigation task can be im-
proved by planning routes that favor texture-rich areas. Achtelik et al. [12] ad-
dresses a Rapid-exploring Random Belief Tree (RRBT) framework that incorpo-
rate MAV dynamics and pose uncertainty. In [13], pose uncertainty is incorpo-
rated in a Rapid-exploring Random Trees (RRT*) framework. Most informative
trajectories are selected using Fischer informative matrix. Previous non-mapped
or non-static regions have impact on local edges and vertexes affected by new
information.

This paper proposes a low-level strategy for MAVs to improve the locally
visual odometry performance. Therefore, high level localization task, such as Si-
multaneous Localization And Mapping (SLAM) are also benefited. The solution
guides the vehicle through a path with high quality image features. In particu-
lar, we propose a method based on Artificial Potential Field (APF) where each
image feature is associated with a corresponding potential energy. A reference
velocity is thus derived that points towards a feature rich region in the current
image frame. The total control input velocity is a linear combination of the ref-
erence velocity with the one imposed by the motion control algorithm so that
the vehicle is driven toward the goal, while avoiding texture-less and non-static
features regions, as it is illustrated in Fig. 1(b).

Most active localization solutions addressed in the literature are built on top
of SLAM, being relatively complex and map dependent. In contrast, our method
does not require a map, but only features selected as inliers in the current frame.
Therefore, similarly to the original work on artificial potential fields by Khatib
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[14], it is a low level real-time local solution which can be integrated with a high-
level method for better performance. In particular, the proposed solution will
not experience the same type of errors as in active SLAM solutions and can be
integrated in a complementary fashion such that the final solution avoids local
minima.

The remainder of this paper is organized as follows: Sec. II introduces basic
notations and definitions. In Sec. III, the proposed method is presented. Sec. IV
presents experimental results. Finally, Sec. V addresses final remarks and future
work.

2 Notations and definitions

Consider the 3D body fixed frame {B} and the 2D image plane frame {I}.
The origin of {B} coincides with the center of gravity of the vehicle and the
origin of {I} corresponds to the top-left image pixel. Vectors are described in
lower case bold and a leading superscript indicates its coordinate frame. The
homogeneous coordinate of vector v is denoted as v̄. When a vector is described
in {I}, the leading superscript is omitted. Matrices are written in upper case
and sets in calligraphic letter. The transformation from body to image frame
T = K[R|t] ∈ R3×4 is known, where R and t denotes the rotation and translation
from {B} to {C}, and K is the intrisic parameter matrix of the camera.

A high level positioning controller computes Bvg = (vx, vy, 0) ∈ R3, a velocity
that drives the vehicle to the spatial goal. Notice that only planar motion is
considered, that is the vehicle keeps a constant height. Also, let p = (u, v) ∈ R2

be the undistorted coordinates of an image feature. In particular, pi ∈ F is the
set of features tracked and selected as inliers in the current image frame.

3 Proposed Method

In this section we describe the proposed method for computing the velocity that
drives the vehicle towards a spatial goal, while avoiding low feature areas. This
is achieved by adding a component to the goal velocity vector Bvg that favors
rich regions regarding features.

3.1 Features to charge

Each feature is associated with an attractive or neutral potential energy. Associ-
ating similar potential energy to every feature in the image frame is not adequate,
since the system could be easily trapped in a local minima or subject to rough
changes when new features are extracted. Instead, taking advantage of the fact
that the camera provides bearing information, the proposed method considers
the orientation of each feature w.r.t. the direction of vg, i.e. the projection of
the goal velocity in the image frame. Thus, as it is expected in a potential field
framework, the final goal itself plays a part in the local decision making process.
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Goal
direction
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Fig. 2: Attractive potential energy increase in the direction of the blue arrow.
Charges are neutral within the circle segment defined by θcs. Attractive and
neutral charges are represented by blue and green dots, respectively.

Let pc = (ur, vr) be a point that belongs to the image frame, and consider
that the feature based velocity shall be computed at that point. For each feature
pi ∈ F , compute

p̂i = (ûi, v̂i) = pi − pc (1)

θi = arccos

(
〈p̂i,vg〉
‖p̂i‖ ‖vg‖

)
, (2)

where θi ∈ [0, π] and vg ∼ T Bv̄g. Notice that only the direction of Bvg is taken
into account for computing the feature-based velocity vector. The last coordinate
of its homogeneous form must be set to 0.

Without loss of generality, features in the image plane can be confined within
the boundary of a circle centered at pc, as shown in Fig. 2. Let the central angle
θ̂cs define a circular segment in the circle, such that the angle θcs is defined as

θcs = π − θ̂cs/2. (3)

A charge Qi ∈ Q is represented as the tuple Qi = (p̂i, qi, θcs), where qi ∈ [0, 1]
is its corresponding potential energy. The charging policy is defined below:

qi =

{
1− θi

θcs
, if θi ≤ θcs

0, if θi > θcs
. (4)

Based on the current frame information, the charging policy considered asso-
ciates high attractive potential energy to features localized in the goal direction.
Features localized away from the goal direction, on the region defined by the
circle segment, have a neutral charge.
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Fig. 3: Case study for the feature based potential field. Current image frame
and inlier features (a). Considering pc as the optical center, the charge map is
built and represented as a heat-map. (b). The potential field map shows the
action derived when evaluating at different pc (c). Goal-friendly region is shown
in yellow and feature-friendly in red (more detail about these regions is shown
in Sec. 3.3). (d) shows commanded actuation as the combination of goal and
feature velocity. (pc = po, λ = 0.1, θCS = 10o., d = 50 pixel, s = 150 pixel).

3.2 Vector Field

Each charge Qi ∈ Q exerts a force fi at pc, given by

fi =


(0, 0)T , if di < r

(di−r)
s qi

(
cos(φi), sin(φi)

)T
, if r ≤ di ≤ s+ r

qi

(
cos(φi), sin(φi)

)T
, if d > s+ r

, (5)

where r is the distance in pixels that a charge must be, from the evaluated point,
to exerted any force on it; s is the spread in pixels of the potential field, and di
and φi are computed as follow

di = ‖p̂i‖ (6)

φi = atan2(ûi, v̂i). (7)

The total force f on the point pc can be computed as

f =
∑
i

fi, (8)

which can be normalized and transformed into a feature based velocity command
v̄f . Its direction in homogeneous coordinates is given as

v̄f =
1

‖f‖

[
f
0

]
. (9)
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Finally, the proposed command action takes the form

v̄ = λv̄g + (1− λ)v̄f , (10)

where λ is a weight factor and v̄g is a normalized velocity. The velocity v̄ can
be transformed from the image frame to the body frame and scaled accordingly.

3.3 Discussion

Artificial potential fields frameworks usually take into consideration the robot
position when computing forces - obstacles exert repulsive force and the goal an
attractive force. In the proposed framework, features can be either attractive or
neutral accordingly to their position w.r.t. the point pc being considered and
the goal direction. As for now, only attractive and neutral charges are admitted,
in the future, the effect of associating repulsive charge to features classified as
outlier will be analyzed.

Figure 3 illustrates a case study. In particular, Fig. 3(a) shows a frame and
extracted features classified as inliers. The goal velocity vg is directed towards the
top-right pixel in the image frame - a poor zone regarding the number of features.
Fig. 3(b) depicts the potential energy associate to each feature when evaluating
the action induced at the central pixel of the camera, po. The potential field
map (see Fig. 3(c)) shows the corresponding field for different values of pc. For
each point in the map, (1)–(10) must be computed. However, for visualization,
vf is not normalized. The map can be classified in a goal-friendly and feature-
friendly actuation zone. Both regions are shown in the potential field map in
yellow (goal-friendly) and red (feature-friendly) background. Suppose λ = 0,
then according to (10) the vehicle follows vf . If pc is within a feature-friendly
region, the vehicle favors more the features than the goal. As a matter of fact,
the vehicle will move away from the goal. On the contrary, if pc is within a goal-
friendly region, the vehicle will move towards the goal. The radius of the charge
r determines whether features close to the point pc affect the solution or not.
Meanwhile, the spread s determines the strength of each charge. The larger the
spread is, the more influence charges away from the point evaluated will have
on the feature driven action. Thus, it limits the prediction horizon based on the
local frame, that is, the belief that a feature on an edge indicates there will be
more features on that direction.

4 Experimental Results

This section describes the experimental setup, as well as the results observed for
multiple flight tests.

4.1 Experimental Setup

Fig. 4 shows the main components employed in experimental validation. The al-
gorithm was tested in the mini-quadrotor Crazyflie 2.0, manufactured by BitCraze.
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cmd

Fig. 4: Experimental setup. Clockwise, starting from the top: the crazyflie
equipped with the mini transmitter camera module FX798T, image receiver,
and capture card; a notebook that runs the code; and an antenna for the com-
munication with the vehicle.

We attached to the vehicle a 4.7 g mini transmitter camera module FX798T
equipped with 120o field of view lens - the camera faces downward. This module
broadcasts images using an embedded 5.8GHz transmitter. On the other side,
we use a receiver that is connected to a computer through a video capture card.
The frame-rate is 30Hz for a 720 × 480 image resolution. The proposed algo-
rithms runs on the off-board computer at frame-rate speed. The flying arena is
equipped with an Optitrack, motion capture system manufactured by the com-
pany NaturalPoint. The system records the motion of retro-reflective markers
using the optical-passive technique. Infrared cameras capture markers’ position
allowing a pose estimation with millimetric precision.

Images and commands are published and received within the ROS (Robot
Operating System) environment. Collective thrust and attitude commands are
sent to the vehicle using the package developed in [15]. A customized PID con-
troller assures the vehicle follows the desired action. The motion capture system
provides feedback for the control loop, while the feature-based potential field
works online as the decision making process, sending desired velocity commands
to the controller. A first order low pass filter with cutoff frequency at 20 Hz
provides smooth control reference for the feature driven action.
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(a)

StartGoal

(b) (c)

Ground truth
Estimation

Fig. 5: Scenario for evaluation of proposed algorithm (a). Localization fails in
the absence of features (b). Feature based velocity vector drives the vehicle to
the goal through a region rich in features (c).

When a new image frame is received, Shi-Tomasi features [16] are extracted.
In addition to a minimum quality threshold, only 100 features with the highest
response are selected. Then, features are tracked across two consecutive frames
using Lucas-Kanade Tracker (LKT) [17]. Within a RANSAC [18] framework, the
8-point algorithm classifies features as inliers or outliers. The solution is robust
under the presence of few false inliers, such that a matching step is unnecessary.

4.2 Evaluation

Multiple flights were performed in a 4m×3m living room alike arena, as shown
in Fig. 5(a). The robot was autonomously controlled to fly from the starting
position to the goal position as indicated by the two carpets. As seen from the
image, the straight path that links both carpets is a regular floor that does not
contain good visual cues. The localization task for a trial is said to succeed if
ORB-SLAM [4] manages to keep track of the pose of the vehicle. ORB-SLAM
run offline, just for evaluation purpose. Multiple trials showed that taking the
straight path towards the goal always results in localization failure due to the
lack of visual features. Fig. 5(b) shows one of the trials where the localization
estimation fails when a straight path is taken. Alternatively, using the proposed
active method, the robot was always capable of reaching the goal while main-
taining localization. Fig. 5(c) shows the path the robot takes, as well as the
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Fig. 6: Multiple trial for λ = 0.45, θ̂cs = 30o and pc = po.

estimated state throughout the time in one of the experiments. Fig. 6 shows
different trials with the proposed method where the robot reaches the goal while
keeping track of its location.

5 Conclusions

This paper proposes a low-level solution for the active visual navigation problem.
Features tracked across consecutive frames are associated with an attractive or
neutral potential energy. The intensity of each charge is a function of the goal
direction, which is given by a motion-control algorithm. The desired vehicle
velocity combines a component that takes visual cues into consideration and a
component related to the spatial goal. Experimental results using a micro aerial
vehicle, equipped with a downward looking camera, showed that the method can
effectively drive the vehicle towards the goal while avoiding no or poor featured
regions. The proposed active solution does not rely on a map and hence can be
integrated within a SLAM framework to improve the accuracy and robustness of
localization and mapping. Points that are currently being investigated include
the analysis of the effect of dynamic tuning of parameters based on mission &
environment characteristics, associating repulsive energy to features classified as
outliers, and the reasoning about computing the feature based velocity vector in
other points than the camera’s optical center.
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