Skip to main content

Mobile Robots as a Tool to Teach First Year Engineering Electronics

  • Conference paper
  • First Online:
Book cover ROBOT 2017: Third Iberian Robotics Conference (ROBOT 2017)

Abstract

Engineering degrees require a strong background in Physical Sciences and Mathematics, demanding a high level of conceptualization and abstract reasoning that many students do not possess at the entry level of their high education studies. This can cause students demotivation and dropout, a situation that Higher Education institutions have felt the need to cope with. One methodology to address this problem is to introduce the use of robots in the classes. This tool has unique characteristics that may potentially contribute to increase students’ motivation and engagement, which are key factors on their academic success. This paper presents the rationale, challenges and methodology used to introduce robots as a tool to teach introductory electronics to first year students in a Electronics and Telecommunications Engineering Masters degree. The paper also reports evaluation indicators that result from two different surveys, one generic, carried out in the scope of the Quality Assurance System of the University, and another one developed specifically to evaluate the course. The results confirm that there is a clear and overall positive impact. Particularly significant are the gains on the students motivation and subject comprehension, without a noticeable impact on the course difficulty and required effort. It is also specially relevant that students are strongly in favour of keeping robot’s usage due to its impact on both knowledge and motivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The questionnaire is still open at the moment of writing this text.

References

  1. Aroca, R.V., Watanabe, F.Y., Avila, M.T.D., Hernandes, A.C.: Mobile robotics integration in introductory undergraduate engineering courses, pp. 139–144. IEEE (2016). https://doi.org/10.1109/LARS-SBR.2016.30. http://ieeexplore.ieee.org/document/7783516/

  2. Beer, R.D., Chiel, H.J., Drushel, R.F.: Using autonomous robotics to teach science and engineering. Commun. ACM 42(6), 85–92 (1999). https://doi.org/10.1145/303849.303866. http://portal.acm.org/citation.cfm?doid=303849.303866

    Article  Google Scholar 

  3. Benitti, F.B.V.: Exploring the educational potential of robotics in schools: a systematic review. Comput. Educ. 58(3), 978–988 (2012). https://doi.org/10.1016/j.compedu.2011.10.006. http://linkinghub.elsevier.com/retrieve/pii/S0360131511002508

    Article  Google Scholar 

  4. Berzonsky, M.D., Kuk, L.S.: Identity status, identity processing style, and the transition to university. J. Adolesc. Res. 15(1), 81–98 (2000). https://doi.org/10.1177/0743558400151005

    Article  Google Scholar 

  5. Eguchi, A.: RoboCupJunior for promoting STEM education, 21st century skills, and technological advancement through robotics competition. Robot. Autonom. Syst. 75, 692–699 (2016). https://doi.org/10.1016/j.robot.2015.05.013. http://linkinghub.elsevier.com/retrieve/pii/S0921889015001281

    Article  Google Scholar 

  6. Fagin, B., Merkle, L.: Measuring the effectiveness of robots in teaching computer science. In: SIGCSE 2003 Proceedings of the 34th SIGCSE Technical Symposium on Computer Science Education, p. 307. ACM Press, Reno (2003). https://doi.org/10.1145/611892.611994. http://portal.acm.org/citation.cfm?doid=611892.611994

  7. Fonseca, P., Pedreiras, P., Cabral, P., Cunha, B., Silva, F., Matos, J.N.: Motivating first year students for an engineering degree. In: CISPEE 2016 – 2nd International Conference of the Portuguese Society for Education in Engineering, Vila Real, Portugal (2016). https://doi.org/10.1109/CISPEE.2016.7777745. http://ieeexplore.ieee.org/document/7777745/

  8. French, B.F., Immekus, J.C., Oakes, W.C.: An examination of indicators of engineering students’ success and persistence. J. Eng. Educ. 94(4), 419–425 (2005). https://doi.org/10.1002/j.2168-9830.2005.tb00869.x

    Article  Google Scholar 

  9. Greenwald, L., Kopena, J.: Mobile robot labs. IEEE Robot. Automat. Mag. 10(2), 25–32 (2003). https://doi.org/10.1109/MRA.2003.1213613

    Article  Google Scholar 

  10. Kantanis, T.: The role of social transition in students’: adjustment to the first-year of university. J. Inst. Res. 9(1), 100–110 (2000)

    Google Scholar 

  11. Kim, C., Kim, D., Yuan, J., Hill, R.B., Doshi, P., Thai, C.N.: Robotics to promote elementary education pre-service teachers’ STEM engagement, learning, and teaching. Comput. Educ. 91, 14–31 (2015). https://doi.org/10.1016/j.compedu.2015.08.005. http://linkinghub.elsevier.com/retrieve/pii/S0360131515300257

    Article  Google Scholar 

  12. Lalonde, J., Bartley, C., Nourbakhsh, I.: Mobile robot programming in education, pp. 345–350. IEEE (2006). https://doi.org/10.1109/ROBOT.2006.1641735. http://ieeexplore.ieee.org/document/1641735/

  13. Linnenbrink, E.A., Pintrich, P.R.: Motivation as an enabler for academic success. Sch. Psychol. Rev. 31(3), 313 (2002)

    Google Scholar 

  14. Lynch, D.J.: Motivational factors, learning strategies and resource management as predictors of course grades. Coll. Student J. 40(2), 423–428 (2006)

    Google Scholar 

  15. McGill, M.M.: Learning to program with personal robots: influences on student motivation. ACM Trans. Comput. Educ. 12(1), 1–32 (2012). https://doi.org/10.1145/2133797.2133801. http://dl.acm.org/citation.cfm?doid=2133797.2133801

    Google Scholar 

  16. McLurkin, J., Rykowski, J., John, M., Kaseman, Q., Lynch, A.J.: Using multi-robot systems for engineering education: teaching and outreach with large numbers of an advanced, low-cost robot. IEEE Trans. Educ. 56(1), 24–33 (2013). https://doi.org/10.1109/TE.2012.2222646. http://ieeexplore.ieee.org/document/6363493/

    Article  Google Scholar 

  17. Mirats Tur, J., Pfeiffer, C.: Mobile robot design in education. IEEE Robot. Autom. Mag. 13(1), 69–75 (2006). https://doi.org/10.1109/MRA.2006.1598055. http://ieeexplore.ieee.org/document/1598055/

    Article  Google Scholar 

  18. Nourbakhsh, I.R., Crowley, K., Bhave, A., Hamner, E., Hsiu, T., Perez-Bergquist, A., Richards, S., Wilkinson, K.: The robotic autonomy mobile robotics course: robot design, curriculum design and educational assessment. Autonom. Robots 18(1), 103–127 (2005). https://doi.org/10.1023/B:AURO.0000047303.20624.02. http://link.springer.com/10.1023/B:AURO.0000047303.20624.02

  19. Oliver, J., Toledo, R.: On the use of robots in a PBL in the first year of computer science/computer engineering studies. In: Global Engineering Education Conference (EDUCON), pp. 1–6. IEEE (2012). https://doi.org/10.1109/EDUCON.2012.6201026. http://ieeexplore.ieee.org/document/6201026/

  20. Ortiz, O.O., Pastor Franco, J.A., Alcover Garau, P.M., Herrero Martin, R.: Innovative mobile robot method: improving the learning of programming languages in engineering degrees. IEEE Trans. Educ. 60(2), 143–148 (2017). https://doi.org/10.1109/TE.2016.2608779. http://ieeexplore.ieee.org/document/7582486/

    Article  Google Scholar 

  21. Sakata Jr., K., Olguin, G.S.: Robotics: a case study of contextualization in engineering education. In: WEE2011 - 1st World Engineering Education Flash Week, Lisbon, Portugal (2011)

    Google Scholar 

  22. Spolaôr, N., Benitti, F.B.: Robotics applications grounded in learning theories on tertiary education: a systematic review. Comput. Educ. 112, 97–107 (2017). https://doi.org/10.1016/j.compedu.2017.05.001.http://linkinghub.elsevier.com/retrieve/pii/S0360131517300970

  23. Tao, S., Dong, Q., Pratt, M.W., Hunsberger, B., Pancer, S.M.: Social support: relations to coping and adjustment during the transition to University in the People’s Republic of China. J. Adolesc. Res. 15(1), 123–144 (2000). https://doi.org/10.1177/0743558400151007

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the work of Prof. José Luís Azevedo, the main developer of DETI robot for his work in the development of tools to promote robotics at student level.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Fonseca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fonseca, P., Pedreiras, P., Silva, F. (2018). Mobile Robots as a Tool to Teach First Year Engineering Electronics. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds) ROBOT 2017: Third Iberian Robotics Conference. ROBOT 2017. Advances in Intelligent Systems and Computing, vol 694. Springer, Cham. https://doi.org/10.1007/978-3-319-70836-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70836-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70835-5

  • Online ISBN: 978-3-319-70836-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics