Skip to main content

Real-Time Deep ConvNet-Based Vehicle Detection Using 3D-LIDAR Reflection Intensity Data

  • Conference paper
  • First Online:
ROBOT 2017: Third Iberian Robotics Conference (ROBOT 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 694))

Included in the following conference series:

Abstract

This paper addresses the problem of vehicle detection using a little explored LIDAR’s modality: the reflection intensity. LIDAR reflection measures the ratio of the received beam sent to a surface, which depends upon the distance, material, and the angle between surface normal and the ray. Considering a 3D-LIDAR mounted on board a robotic vehicle, which is calibrated with respect to a monocular camera, a Dense Reflection Map (DRM) is generated from the projected sparse LIDAR’s reflectance intensity, and inputted to a Deep Convolutional Neural Network (ConvNet) object detection framework for the vehicle detection. The performance on the KITTI is superior to some of the approaches that use LIDAR’s range-value, and hence it demonstrates the usability of LIDAR’s reflection for vehicle detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://pjreddie.com/darknet/yolo/.

References

  1. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: IEEE CVPR (2017)

    Google Scholar 

  2. Tatoglu, A., Pochiraju, K.: Point cloud segmentation with LIDAR reflection intensity behavior. In: IEEE ICRA (2012)

    Google Scholar 

  3. Hernandez, D.C., Hoang, V.D., Jo, K.-H.: Lane surface identification based on reflectance using laser range finder. In: IEEE/SICE SII (2014)

    Google Scholar 

  4. Caltagirone, L., Samuel, S., Svensson, L., Wahde, M.: Fast LIDAR-based road detection using fully convolutional neural networks. In: IEEE IV (2017)

    Google Scholar 

  5. Behley, J., Steinhage, V., Cremers, A.B.: Laser-based segment classification using a mixture of bag-of-words. In: IEEE/RSJ IROS (2013)

    Google Scholar 

  6. Asvadi, A., Garrote, L., Premebida, C., Peixoto, P., Nunes, U.J.: DepthCN: vehicle detection using 3D-LIDAR and convnet. In: IEEE ITSC (2017)

    Google Scholar 

  7. Wang, D.Z., Posner, I.: Voting for voting in online point cloud object detection. In: Robotics: Science and Systems (2015)

    Google Scholar 

  8. Li, B., Zhang, T., Xia, T.: Vehicle detection from 3D Lidar using fully convolutional network. In: Robotics: Science and Systems (2016)

    Google Scholar 

  9. Li, B.: 3D fully convolutional network for vehicle detection in point cloud. In: IEEE/RSJ IROS (2017)

    Google Scholar 

  10. Gonzalez, A., Vazquez, D., Lopez, A.M., Amores, J.: On-board object detection: multicue, multimodal, and multiview random forest of local experts. CYB IEEE Trans. 47, 3980–3990 (2016)

    Article  Google Scholar 

  11. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network for autonomous driving. In: IEEE CVPR (2017)

    Google Scholar 

  12. Oh, S.-I., Kang, H.-B.: Object detection and classification by decision-level fusion for intelligent vehicle systems. Sensors 17(1), 207 (2017)

    Article  MathSciNet  Google Scholar 

  13. Amidror, I.: Scattered data interpolation methods for electronic imaging systems: a survey. J. Electron. Imaging 11(2), 157–176 (2002)

    Article  Google Scholar 

  14. Premebida, C., Garrote, L., Asvadi, A., Ribeiro, A.P., Nunes, U.: High-resolution LIDAR-based depth mapping using bilateral filter. In: IEEE ITSC (2016)

    Google Scholar 

  15. Ashraf, I., Hur, S., Park, Y.: An investigation of interpolation techniques to generate 2D intensity image from LIDAR data. IEEE Access 5, 8250–8260 (2017)

    Article  Google Scholar 

  16. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE CVPR (2016)

    Google Scholar 

  17. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: IEEE CVPR (2012)

    Google Scholar 

  18. Plotkin, L.: PyDriver. https://github.com/lpltk/pydriver. Accessed Sep 2017

Download references

Acknowledgments

This work has been supported by “AUTOCITS - Regulation Study for Interoperability in the Adoption of Autonomous Driving in European Urban Nodes” - Action number 2015-EU-TM-0243-S, co-financed by the European Union (INEA-CEF); and FEDER through COMPETE 2020, Portugal 2020 program under grant UID/EEA/00048/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Asvadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Asvadi, A., Garrote, L., Premebida, C., Peixoto, P., Nunes, U.J. (2018). Real-Time Deep ConvNet-Based Vehicle Detection Using 3D-LIDAR Reflection Intensity Data. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds) ROBOT 2017: Third Iberian Robotics Conference. ROBOT 2017. Advances in Intelligent Systems and Computing, vol 694. Springer, Cham. https://doi.org/10.1007/978-3-319-70836-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70836-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70835-5

  • Online ISBN: 978-3-319-70836-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics