Abstract
Multivariate Cryptography is one of the main candidates for creating post-quantum cryptosystems. Especially in the area of digital signatures, there exist many practical and secure multivariate schemes. However, there is a lack of multivariate signature schemes with special properties such as blind, ring and group signatures. In this paper, we propose a generic technique to transform the Rainbow multivariate signature scheme into a blind signature schemes. The resulting scheme satisfies the usual blindness criterion and a one-more-unforgeability criterion adapted to MQ signatures, produces short blind signatures and is very efficient.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3
Chaum, D.: Blind signatures for untraceable payment. In: Proceedings of CRYPTO 1982, pp. 199–203. Plenum Press (1983)
Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-key engines: \(\cal{MQ}\)-cryptosystems as replacement for elliptic curves? In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_4
Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H., Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate PKCs on modern x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9_3
Ding, J., Dubois, V., Yang, B.-Y., Chen, O.C.-H., Cheng, C.-M.: Could SFLASH be repaired? In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 691–701. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_56
Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_12
Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl. Algebra 139, 61–88 (1999)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)
Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: From 5-pass MQ-based identification to MQ-based signatures. Cryptology ePrint Archive: Report 2016/708
Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052233
Kravitz, D.: Digital Signature Algorithm. US patent 5,231,668, July 1991
Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_15
Goodin, D.: NSA preps quantum-resistant algorithms to head off crypto-apocalypse. http://arstechnica.com/security/2015/08/nsa-preps-quantum-resistant-algorithms-to-head-off-crypto-apocolypse/
National Institute of Standards and Technology: Report on post-quantum Cryptography. NISTIR draft 8105. http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
Patarin, J., Courtois, N., Goubin, L.: QUARTZ, 128-bit long digital signatures. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–297. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_21
Petzoldt, A., Bulygin, S., Buchmann, J.: Selecting parameters for the rainbow signature scheme. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 218–240. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2_16
Petzoldt, A., Bulygin, S., Buchmann, J.: CyclicRainbow – a multivariate signature scheme with a partially cyclic public key. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 33–48. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17401-8_4
Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design principles for HFEv- based multivariate signature schemes. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 311–334. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_14
Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_24
SageMath, the Sage Mathematics Software System (Version 7.1), The Sage Developers (2016). http://www.sagemath.org
Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes based on multivariate quadratic polynomials. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 706–723. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_40
Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
Thomae, E., Wolf, C.: Solving underdetermined systems of multivariate quadratic equations revisited. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 156–171. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_10
Yasuda, T., Dahan, X., Huang, Y.-J., Takagi, T., Sakurai, K.: MQ challenge: hardness evaluation of solving multivariate quadratic problems. IACR Cryptology ePrint Archive 2015/275 (2015)
Acknowledgements
The authors would like to thank the reviewers and the shepherd in particular for their helpful comments. This work was supported in part by the Research Council KU Leuven: C16/15/058. In addition, this work was supported by the European Commission through the Horizon 2020research and innovation programme under grant agreement No H2020-ICT-2014-644371 WITDOM, H2020-ICT-2014-645622 PQCRYPTO and H2020-DS-2014-653497 PANORAMIX, and through the SECURITY programme under FP7-SEC-2013-1-607049 EKSISTENZ. Alan Szepieniec is being supported by a doctoral grant of the Flemish Agency for Innovation and Entrepreneurship (VLAIO, formerly IWT).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 International Financial Cryptography Association
About this paper
Cite this paper
Petzoldt, A., Szepieniec, A., Mohamed, M.S.E. (2017). A Practical Multivariate Blind Signature Scheme. In: Kiayias, A. (eds) Financial Cryptography and Data Security. FC 2017. Lecture Notes in Computer Science(), vol 10322. Springer, Cham. https://doi.org/10.1007/978-3-319-70972-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-70972-7_25
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70971-0
Online ISBN: 978-3-319-70972-7
eBook Packages: Computer ScienceComputer Science (R0)