Skip to main content

Efficient Round-Optimal Blind Signatures in the Standard Model

  • Conference paper
Financial Cryptography and Data Security (FC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10322))

Included in the following conference series:

Abstract

Blind signatures are at the core of e-cash systems and have numerous other applications. In this work we construct efficient blind and partially blind signature schemes over bilinear groups in the standard model. Our schemes yield short signatures consisting of only a couple of elements from the shorter source group and have very short communication overhead consisting of 1 group element on the user side and 3 group elements on the signer side. At 80-bit security, our schemes yield signatures consisting of only 40 bytes which is \(67\%\) shorter than the most efficient existing scheme with the same security in the standard model. Verification in our schemes requires only a couple of pairings. Our schemes compare favorably in every efficiency measure to all existing counterparts offering the same security in the standard model. In fact, the efficiency of our signing protocol as well as the signature size compare favorably even to many existing schemes in the random oracle model. For instance, our signatures are shorter than those of Brands’ scheme which is at the heart of the U-Prove anonymous credential system used in practice. The unforgeability of our schemes is based on new intractability assumptions of a “one-more” type which we show are intractable in the generic group model, whereas their blindness holds w.r.t. malicious signing keys in the information-theoretic sense. We also give variants of our schemes for a vector of messages.

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement n. 307937 and EPSRC grant EP/J009520/1. The work was done while the author was at University College London.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdalla, M., Namprempre, C., Neven, G.: On the (im)possibility of blind message authentication codes. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 262–279. Springer, Heidelberg (2006). https://doi.org/10.1007/11605805_17

    Chapter  Google Scholar 

  2. Abe, M.: A secure three-move blind signature scheme for polynomially many signatures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_9

    Chapter  Google Scholar 

  3. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_12

    Chapter  Google Scholar 

  4. Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0034851

    Chapter  Google Scholar 

  5. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for modular protocol design. Cryptology ePrint Archive, Report 2010/133. http://eprint.iacr.org/2010/133.pdf

  6. Abe, M., Ohkubo, M.: A framework for universally composable non-committing blind signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 435–450. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_26

    Chapter  Google Scholar 

  7. Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind signature schemes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 82–99. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_5

    Chapter  Google Scholar 

  8. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: ACM-CCS 2013, pp. 1087–1098. ACM (2013)

    Google Scholar 

  9. Barbosa, M., Farshim, P.: Strong knowledge extractors for public-key encryption schemes. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 164–181. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14081-5_11

    Chapter  Google Scholar 

  10. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006). https://doi.org/10.1007/11693383_22

    Chapter  Google Scholar 

  11. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol. 16(3), 185–215 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous attestation with user-controlled linkability. Int. J. Inf. Secur. 12(3), 219–249 (2013)

    Article  Google Scholar 

  13. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on randomizable ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_25

    Chapter  Google Scholar 

  14. Blazy, O., Pointcheval, D., Vergnaud, D.: Compact round-optimal partially-blind signatures. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 95–112. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_6

    Chapter  Google Scholar 

  15. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the Gap-Diffie-Hellman-Group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_3

    Chapter  Google Scholar 

  16. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptol. 17(4), 297–319 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Brands, S.: Rethinking Public Key Infrastructures and Digital Certificates: Building in Privacy. MIT Press, Cambridge (2000)

    Book  Google Scholar 

  19. Brands, S., Paquin, C.: U-Prove Cryptographic Specification v1 (2010)

    Google Scholar 

  20. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS 2004, pp. 132–145. ACM (2004)

    Google Scholar 

  21. Camenisch, J., Koprowski, M., Warinschi, B.: Efficient blind signatures without random oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 134–148. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30598-9_10

    Chapter  Google Scholar 

  22. Canard, S., Devigne, J., Sanders, O.: Delegating a pairing can be both secure and efficient. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 549–565. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07536-5_32

    Chapter  MATH  Google Scholar 

  23. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 199–203. Springer, Cham (1983). https://doi.org/10.1007/978-1-4757-0602-4_18

    Chapter  Google Scholar 

  24. Döttling, N., Fleischhacker, N., Krupp, J., Schröder, D.: Two-message, oblivious evaluation of cryptographic functionalities. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 619–648. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_22

    Chapter  Google Scholar 

  25. Dwork, C., Naor, M.: Zaps and their applications. In: FOCS 2000, pp. 283–293. IEEE (2000)

    Google Scholar 

  26. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  27. Fischlin, M.: Round-optimal composable blind signatures in the common reference string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_4

    Chapter  Google Scholar 

  28. Fischlin, M., Schröder, D.: Security of blind signatures under aborts. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 297–316. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_17

    Chapter  Google Scholar 

  29. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_10

    Chapter  Google Scholar 

  30. Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application to round-optimal blind signatures. Cryptology ePrint Archive, Report 2009/320. http://eprint.iacr.org/2009/320.pdf

  31. Fuchsbauer, G., Hanser, C., Kamath, C., Slamanig, D.: Practical round-optimal blind signatures in the standard model from weaker assumptions. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 391–408. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9_21

    Chapter  Google Scholar 

  32. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes and constant-size anonymous credentials. Cryptology ePrint Archive, Report 2014/944. http://eprint.iacr.org/2014/944.pdf

  33. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 233–253. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_12

    Chapter  MATH  Google Scholar 

  34. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale elections. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 244–251. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57220-1_66

    Chapter  Google Scholar 

  35. Galbraith, S., Paterson, K., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156, 3113–3121 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_27

    Chapter  Google Scholar 

  37. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind signatures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_36

    Chapter  Google Scholar 

  38. Ghadafi, E.: More efficient structure-preserving signatures - or: bypassing the type-III lower bounds. Cryptology ePrint Archive, Report 2016/255. http://eprint.iacr.org/2016/255.pdf

  39. Ghadafi, E.: Efficient round-optimal blind signatures in the standard model. Cryptology ePrint Archive, Report 2017/045. http://eprint.iacr.org/2017/045.pdf

  40. Ghadafi, E., Smart, N.P.: Efficient two-move blind signatures in the common reference string model. In: Gollmann, D., Freiling, F.C. (eds.) ISC 2012. LNCS, vol. 7483, pp. 274–289. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33383-5_17

    Chapter  Google Scholar 

  41. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. SIAM J. Comput. 41(5), 1193–1232 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_26

    Chapter  Google Scholar 

  43. Hanzlik, L., Kluczniak, K.: A short paper on blind signatures from knowledge assumptions. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 535–543. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4_31

    Chapter  Google Scholar 

  44. Hazay, C., Katz, J., Koo, C.-Y., Lindell, Y.: Concurrently-secure blind signatures without random oracles or setup assumptions. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 323–341. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_18

    Chapter  Google Scholar 

  45. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052233

    Chapter  Google Scholar 

  46. Kiayias, A., Zhou, H.-S.: Concurrent blind signatures without random oracles. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 49–62. Springer, Heidelberg (2006). https://doi.org/10.1007/11832072_4

    Chapter  Google Scholar 

  47. Lindell, Y.: Bounded-concurrent secure two-party computation without setup assumptions. In: STOC 2003, pp. 683–692. ACM (2003)

    Google Scholar 

  48. Meiklejohn, S., Shacham, H., Freeman, D.M.: Limitations on transformations from composite-order to prime-order groups: the case of round-optimal blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 519–538. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_30

    Chapter  Google Scholar 

  49. Okamoto, T.: Efficient blind and partially blind signatures without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_5

    Chapter  Google Scholar 

  50. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

    Chapter  Google Scholar 

  51. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8_7

    Chapter  Google Scholar 

  52. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000)

    Article  MATH  Google Scholar 

  53. Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_24

    Chapter  Google Scholar 

  54. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_22

    Chapter  Google Scholar 

  55. Schröder, D., Unruh, D.: Security of blind signatures revisited. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 662–679. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_39

    Chapter  Google Scholar 

  56. Seo, J.H., Cheon, J.H.: Beyond the limitation of prime-order bilinear groups, and round optimal blind signatures. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 133–150. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_8

    Chapter  MATH  Google Scholar 

  57. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_18

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Ian Goldberg for pointing out an issue in the description of the partially blind scheme in an earlier version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam Ghadafi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 International Financial Cryptography Association

About this paper

Cite this paper

Ghadafi, E. (2017). Efficient Round-Optimal Blind Signatures in the Standard Model. In: Kiayias, A. (eds) Financial Cryptography and Data Security. FC 2017. Lecture Notes in Computer Science(), vol 10322. Springer, Cham. https://doi.org/10.1007/978-3-319-70972-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70972-7_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70971-0

  • Online ISBN: 978-3-319-70972-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics