Skip to main content

Ensemble Neural Network Optimization Using a Gravitational Search Algorithm with Interval Type-1 and Type-2 Fuzzy Parameter Adaptation in Pattern Recognition Applications

  • Chapter
  • First Online:
Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 749))

  • 1321 Accesses

Abstract

In this paper we consider the problem of optimizing ensemble neural networks for pattern recognition with Type-1 and Type-2 fuzzy logic for parameter adaptation in the gravitational search algorithm. The database to be used is of echocardiography images, since these images are very important in clinical echocardiography, and these images help the doctors to diagnose cardiac diseases, as well as to prevent this type of diseases in patient treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)

    Article  MATH  Google Scholar 

  2. D. Sánchez, P. Melin, O. Castillo, Optimization of modular granular neural networks using a hierarchical genetic algorithm based on the database complexity applied to human recognition. Inf. Sci. 309(10), 73–101 (2015)

    Article  Google Scholar 

  3. D. Sánchez, P. Melin, O. Castillo, Optimization of modular granular neural networks using hierarchical genetic algorithms for human recognition using the ear biometric measure. Eng. Appl. Artif. Intell. 27, 41–56 (2014)

    Article  Google Scholar 

  4. F. Valdez, P. Melin, O. Castillo, Modular Neural Networks architecture optimization with a new nature inspired method using a fuzzy combination of particle swarm optimization and genetic algorithms. Inf. Sci. 270(20), 143–153 (2014)

    Article  Google Scholar 

  5. A. Zameer, J. Arshad, A. Khan, M. Asif, Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks. Energy Convers. Manag. 134(15), 361–372 (2017)

    Article  Google Scholar 

  6. H. Li, X. Wang, S. Ding, Research of multi-sided multi-granular neural network ensemble optimization method. Neurocomputing 197(12), 78–85 (2016)

    Google Scholar 

  7. M. Pulido, P. Melin, O. Castillo, Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the Mexican Stock Exchange. Inf. Sci. 280(1), 188–204 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Z. Zhao, X. Feng, Y. Lin, F. Wei, S. Wang, T. Xiao, M. Cao, Z. Hou, Evolved neural network ensemble by multiple heterogeneous swarm intelligence, Neurocomputing 149(Part A, 3), 29–38 (2015)

    Google Scholar 

  9. G. Gao, X. Wan, S. Yao, Z. Cui, C. Zhou, X. Sun, Reversible data hiding with contrast enhancement and tamper localization for medical images. Inf. Sci. 385386, 250–265 (2017)

    Article  Google Scholar 

  10. M. Arsalan, A. Qureshi, A. Khan, M. Rajarajan, Protection of medical images and patient related information in healthcare: using an intelligent and reversible watermarking technique. Appl. Soft Comput. 51, 168–179 (2017)

    Article  Google Scholar 

  11. Y. Yang, W. Zhang, D. Liang, N. Yu, Reversible data hiding in medical images with enhanced contrast in texture area. Digit. Signal Proc. 52, 13–24 (2016)

    Article  Google Scholar 

  12. J. Oliva, H. Lee, N. Spolaôr, C. Coy, F. Wu, Prototype system for feature extraction, classification and study of medical images. Expert Syst. Appl. 63(30), 267–283 (2016)

    Article  Google Scholar 

  13. F. Valdez, J.C. Vazquez, P. Melin, O. Castillo, Comparative study of the use of fuzzy logic in improving particle swarm optimization variants for mathematical functions using co-evolution. Appl. Soft Comput. 52, 1070–1083 (2017)

    Article  Google Scholar 

  14. A. Bakdi, A. Hentout, H. Boutami, A. Maoudj, O. Hachour, B. Bouzouia, Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control. Robot. Auton. Sys. 89, 95–109 (2017)

    Article  Google Scholar 

  15. S. Rajak, P. Parthiban, R. Dhanalakshmi, Sustainable transportation systems performance evaluation using fuzzy logic. Ecol. Ind. 71, 503–513 (2016)

    Article  Google Scholar 

  16. L. Cervantes, O. Castillo, Type-2 fuzzy logic aggregation of multiple fuzzy controllers for airplane flight control. Inf. Sci. 324(10), 247–256 (2015)

    Article  Google Scholar 

  17. C. Ulu, Exact analytical inversion of interval type-2 TSK fuzzy logic systems with closed form inference methods. Appl. Soft Comput. 37, 60–67 (2015)

    Article  Google Scholar 

  18. F. Olivas, F. Valdez, O. Castillo, C.I. Gonzalez, G. Martinez, P. Melin, Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl. Soft Comput. 53, 74–87 (2017)

    Article  Google Scholar 

  19. A. Sombra, F. Valdez, P. Melin, O. Castillo, A new gravitational search algorithm using fuzzy logic to parameter adaptation, in IEEE Congress on Evolutionary Computation (Cancun, México, 2013), pp. 1068–1074

    Google Scholar 

  20. F. Valdez, P. Melin, O. Castillo, Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making, in IEEE International Conference on Fuzzy Systems (2009), pp. 2114–2119

    Google Scholar 

  21. G.M. Mendez, O. Castillo, Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm, in Fuzzy Systems, FUZZ’05. The 14th IEEE International Conference on (2005), pp. 230–235

    Google Scholar 

  22. O. Castillo, P. Melin, Design of intelligent systems with interval type-2 fuzzy logic, in Type-2 Fuzzy Logic: Theory and Applications (2008), pp. 53–76

    Google Scholar 

  23. O. Castillo, P. Melin, E. Ramírez, J. Soria, Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system, Expert Sys. Appl. 39(3), 2947–2955 (2012)

    Google Scholar 

  24. L. Aguilar, P. Melin, O. Castillo, Intelligent control of a stepping motor drive using a hybrid neuro-fuzzy ANFIS approach, Appl. Soft Comput. 3(3), 209–219 (2003)

    Google Scholar 

  25. P. Melin, O. Castillo, Modelling, simulation and control of non-linear dynamical systems: an intelligent approach using soft computing and fractal theory, CRC Press, (2001)

    Google Scholar 

  26. P. Melin, CI Gonzalez, JR Castro, O. Mendoza, O. Castillo, Edge-detection method for image processing based on generalized type-2 fuzzy logic, IEEE Trans. Fuzzy Sys. 22(6), 1515–1525 (2014)

    Google Scholar 

  27. P. Melin, O. Castillo, Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach, IEEE Trans. Industr. Electron. 48(5), 951–955 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Melin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González, B., Melin, P., Valdez, F., Prado-Arechiga, G. (2018). Ensemble Neural Network Optimization Using a Gravitational Search Algorithm with Interval Type-1 and Type-2 Fuzzy Parameter Adaptation in Pattern Recognition Applications. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications. Studies in Computational Intelligence, vol 749. Springer, Cham. https://doi.org/10.1007/978-3-319-71008-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71008-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71007-5

  • Online ISBN: 978-3-319-71008-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics