Abstract
Symbol-pair codes were first introduced by Cassuto and Blaum (2010). The minimum pair distance of a code is a criterion that characterises the error correcting capability of the code with respect to pair errors. The codes that achieve the optimal minimum pair distance (for given codeword length, code book size and alphabet) are called Maximum Distance Separable (MDS) symbol-pair codes. A way to study the minimum pair distance of a code is through its connection to the minimum Hamming distance of the code. For certain structured codes, these two types of distances can be very different. Yaakobi et al. (2016) showed that for a binary cyclic code, the minimum pair distance is almost three halves of its minimum Hamming distance. We extend this connection to q-ary (q is a prime power) constacyclic codes. The extension involves non-trivial usage of the double counting technique in combinatorics. Such a connection naturally yields a constructive lower bound on the minimum pair distance of q-ary symbol-pair codes. For some choices of the code parameters, this lower bound matches the Singleton type upper bound, yielding q-ary MDS symbol-pair codes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cassuto, Y., Blaum, M.: Codes for symbol-pair read channels. Trans. Inf. Theory 57(12), 8011–8020 (2011)
Chee, Y.M., Kiah, H. M., Wang, C.: Maximum distance separable symbol-pair codes. In: Proceedings of International Symposium Information Theory, Cambridge, MA, USA, pp. 2886–2890 (2012)
Yaakobi, E., Bruck. J., Siegel, P.H.: Construction and decoding of cyclic codes over \(b\)-symbol read channels. IEEE Trans. Inf. Theory 62(4) (2016)
Kai, X.S., Zhu, S.X., Li, P.: A construction of new MDS symbol-pair codes. IEEE Trans. Inf. Theory 61(11) (2015)
De Boer, M.A.: Almost MDS codes. Designs Codes Cryptogr. 9(2), 143–155 (1996)
Chee, Y.M., Ji, L., Kiah, H.M., Wang, C., Yin, J.: Maximum distance separable codes for symbol-pair read channels. IEEE Trans. Inf. Theory 59(11), 7259–7267 (2013)
Chen, B., Lin, L., Liu, H.: Constacyclic symbol-pair codes: lower bounds and optimal constructions. arXiv:1605. 03460v1 [cs. IT] (2016)
Kai, X.S., Zhu, S.X., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)
Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015)
Cassuto, Y., Blaum, M.: Codes for symbol-pair read channels. In: Proceedings of International Symposium Information Theory, Austin, TX, USA, pp. 988–992 (2010)
Cassuto, Y., Litsyn, S.: Symbol-pair codes: algebraic constructions and asymptotic bounds. In: Proceedings of International Symposium Information Theory, St. Petersburg, Russia, pp. 2348–2352 (2011)
Chee, Y.M., Kiah, H.M., Wang, C.: Maximum distance separable symbol-pair codes. In: Proceedings of International Symposium Information Theory, Cambridge, MA, USA, pp. 2886–2890 (2012)
Yaakobi, E., Bruck, J., Siegel, P.H.: Decoding of Cyclic Codes over Symbol-Pair Read Channels. In: Proceedings of International Symposium Information Theory, Cambridge, MA, USA, pp. 2891–2895 (2012)
Li, S.X., Ge, G.N.: Constructions of maximum distance separable symbol-pair codes using cyclic and constacyclic codes. Des. Codes Crytogr. 84, 359–372 (2017). https://doi.org/10.1007/s10623-016-0271-y
Acknowledgment
The author expresses her gratitude to Liming Ma and Fuchun Lin for their instructive and useful suggestions of this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
For better understanding,we give detailed proof of Lemma 1.
Proof
Let \(\varvec{x}=(x_0,x_1,\cdots ,x_{n-1})\in \varSigma ^n.\) Our goal is to calculate \(w_p(\varvec{x}),\) namely,
Now we let
\(S_0=\{i:(x_i,x_{i+1})\ne (0,0)\ \text {and}\ x_i=1\},\)
\(S_1=\{i:(x_i,x_{i+1})= (0,1)\}.\)
In the cases above, \(S_0\) contains all the pairs (1, 0) and (1, 1). \(S_1\) contains all the pairs (0, 1). Hence, \(|S_0|=\omega _H(\varvec{x})\), \(S_0\cap S_1=\emptyset \), and \(\omega _p(\varvec{x})=|S_0|+|S_1|\). For all \(0\le i\le {n-1}\), \(i\in S_1\) if and only if \(x_{i+1}=1\) and \(x_i=0\). Thus, \(x_i+x_{i+1}=1\) or \(x_{i+1}^{'}=1\), where \(x_i=0\). Hence, we get
Note that for any \(\varvec{x}\in \varSigma ^n\),
and the sum of the cardinality of the two sets is \(\omega _H(\varvec{x}^{'})\). Hence, \(S_1=\frac{\omega _H(\varvec{x}^{'})}{2}\) and
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Zhang, H. (2017). Improvement on Minimum Distance of Symbol-Pair Codes. In: O'Neill, M. (eds) Cryptography and Coding. IMACC 2017. Lecture Notes in Computer Science(), vol 10655. Springer, Cham. https://doi.org/10.1007/978-3-319-71045-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-71045-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-71044-0
Online ISBN: 978-3-319-71045-7
eBook Packages: Computer ScienceComputer Science (R0)