Abstract
Evolutionary algorithms (as well as a number of other metaheuristics) have become a popular choice for solving problems having two or more (often conflicting) objectives (the so-called multi-objective optimization problems). This area, known as EMOO (Evolutionary Multi-Objective Optimization) has had an important growth in the last 20 years, and several people (particularly newcomers) get the impression that it is now very difficult to make contributions of sufficient value to justify, for example, a PhD thesis. However, a lot of interesting research is still under way. In this paper, we will briefly review some of the research topics on evolutionary multi-objective optimization that are currently attracting a lot of interest (e.g., indicator-based selection, many-objective optimization and use of surrogates) and which represent good opportunities for doing research. Some of the challenges currently faced by this discipline will also be delineated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A metaheuristic is a high level strategy for exploring search spaces by using different methods [14]. Metaheuristics have both a diversification (i.e., exploration of the search space) and an intensification (i.e., exploitation of the accumulated search experience) procedure.
- 2.
The author maintains the EMOO repository, which currently contains over 10,850 bibliographic references related to evolutionary multi-objective optimization. The EMOO repository is located at: https://emoo.cs.cinvestav.mx.
- 3.
Without loss of generality, we will assume only minimization problems.
- 4.
In fact, the earliest use of the hypervolume into a MOEA is as a density estimator in a secondary population (see [65]).
- 5.
References
Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and new trends. Int. Trans. Oper. Res. 20(1), 1ā48 (2013)
Andersson, M., Bandaru, S., Ng, A.H.: Tuning of multiple parameter sets in evolutionary algorithms. In: 2016 Genetic and Evolutionary Computation Conference (GECCO 2016), Denver, Colorado, USA, 20ā24 July 2016, pp. 533ā540. ACM Press (2016). ISBN 978-1-4503-4206-3
Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45ā76 (2011). Spring
Bechikh, S., Elarbi, M., Ben Said, L.: Many-objective optimization using evolutionary algorithms: a survey. In: Bechikh, S., Datta, R., Gupta, A. (eds.) Recent Advances in Evolutionary Multi-objective Optimization. ALO, vol. 20, pp. 105ā137. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42978-6_4
Bentley, J., Kung, H., Schkolnick, M., Thompson, C.: On the average number of maxima in a set of vectors and applications. J. Assoc. Comput. Mach. 25(4), 536ā543 (1978)
Bentley, P.J., Wakefield, J.P.: Finding acceptable solutions in the pareto-optimal range using multiobjective genetic algorithms. In: Chawdhry, P.K., Roy, R., Pant, R.K. (eds.) Soft Computing in Engineering Design and Manufacturing, Part 5, pp. 231ā240. Springer, London (1997). https://doi.org/10.1007/978-1-4471-0427-8_25. Presented at the 2nd On-line World Conference on Soft Computing in Design and Manufacturing (WSC2)
Molinet Berenguer, J.A., Coello Coello, C.A.: Evolutionary many-objective optimization based on kuhn-munkresā algorithm. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 3ā17. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_1
de Oliveira, F.B., Davendra, D., GuimarĆ£es, F.G.: Multi-objective differential evolution on the GPU with C-CUDA. In: SnÔŔel, V., Abraham, A., Corchado, E.S. (eds.) SOCO 2012. AISC, vol. 188, pp. 123ā132. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32922-7_13
Best, C.: Multi-Objective Cultural Algorithms. Masterās thesis, Wayne State University, Detroit, Michigan, USA (2009)
Best, C., Che, X., Reynolds, R.G., Liu, D.: Multi-objective cultural algorithms. In: 2010 IEEE Congress on Evolutionary Computation (CEC 2010), Barcelona, Spain, 18ā23 July 2010, pp. 3330ā3338. IEEE Press (2010)
Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Europ. J. Oper. Res. 181(3), 1653ā1669 (2007)
Beume, N., Naujoks, B., Preuss, M., Rudolph, G., Wagner, T.: Effects of 1-Greedy \(\cal{S}\)-metric-selection on innumerably large pareto fronts. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 21ā35. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01020-0_7
Bhattacharya, M., Lu, G.: A dynamic approximate fitness based hybrid ea for optimization problems. In: Proceedings of IEEE Congress on Evolutionary Computation. pp. 1879ā1886 (2003)
Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268ā308 (2003)
Bringmann, K., Friedrich, T.: The maximum hypervolume set yields near-optimal approximation. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (GECCO 2010), Portland, Oregon, USA, 7ā11 July 2010, pp. 511ā518. ACM Press (2010). ISBN 978-1-4503-0072-8
Brockhoff, D.: A bug in the multiobjective optimizer IBEA: salutary lessons for code release and a performance re-assessment. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 187ā201. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15934-8_13
Brockhoff, D., Wagner, T., Trautmann, H.: On the properties of the \(R2\) indicator. In: 2012 Genetic and Evolutionary Computation Conference (GECCO 2012), Philadelphia, USA, pp. 465ā472. ACM Press, July 2012. ISBN: 978-1-4503-1177-9
Brockhoff, D., Zitzler, E.: Are all objectives necessary? on dimensionality reduction in evolutionary multiobjective optimization. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 533ā542. Springer, Heidelberg (2006). https://doi.org/10.1007/11844297_54
Büche, D., Milano, M., Koumoutsakos, P.: Self-organizing maps for multi-objective optimization. In: Barry, A.M. (ed.) GECCO 2002: Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference, pp. 152ā155. AAAI, New York (2002)
Bueche, D., Schraudolph, N., Koumoutsakos, P.: Accelerating evolutionary algorithms with gaussian process fitness function models. IEEE Trans. Syst. Man Cybern. Part C 35(2), 183ā194 (2005)
Bui, L.T., Nguyen, M.H., Branke, J., Abbass, H.A.: Tackling dynamic problems with multiobjective evolutionary algorithms. In: Knowles, J., Corne, D., Deb, K. (eds.) Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 77ā91. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-72964-8_4
Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ćzcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695ā1724 (2013)
Chen, J.H., Goldberg, D.E., Ho, S.Y., Sastry, K.: Fitness inheritance in multi-objective optimization. In: Langdon, W., CantĆŗ-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M., Schultz, A., Miller, J., Burke, E., Jonoska, N. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002), San Francisco, California, pp. 319ā326. Morgan Kaufmann Publishers, July 2002
Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007). ISBN 978-0-387-33254-3
Coello Coello, C.A., Landa Becerra, R.: Evolutionary multiobjective optimization using a cultural algorithm. In: 2003 IEEE Swarm Intelligence Symposium Proceedings, Indianapolis, Indiana, USA, pp. 6ā13. IEEE Service Center, April 2003
Corne, D., Knowles, J.: Techniques for highly multiobjective optimisation: some nondominated points are better than others. In: Thierens, D. (ed.) 2007 Genetic and Evolutionary Computation Conference (GECCO 2007), vol. 1, pp. 773ā780. ACM Press, London (2007)
Cruz, C., Gonzalez, J.R., Pelta, D.A.: Optimization in dynamic environments: a survey on problems, methods and measures. Soft. Comput. 15(7), 1427ā1448 (2011)
Cserti, P., Szondi, S., GaĆ”l, B., Kozmann, G., VassĆ”nyi, I.: GPU based parallel genetic algorithm library. In: FilipiÄ, B., Å ilc, J. (eds.) Bioinspired Optimization Methods and Their Applications, Proceedings of the Fifth International Conference on Bioinspired Optimization Methods and their Applications, BIOMA 2012, Bohinj, Slovenia, 24ā25 May 2012, pp. 231ā244. Jožef Stefan Institute (2012). ISBN 978-961-264-043-9
Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577ā601 (2014)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182ā197 (2002)
Deb, K., Sinha, A., Kukkonen, S.: Multi-objective test problems, linkages, and evolutionary methodologies. In: Keijzer, M. et al. (eds.) 2006 Genetic and Evolutionary Computation Conference (GECCO 2006), Seattle, Washington, USA, vol. 2, pp. 1141ā1148. ACM Press, July 2006. ISBN 1-59593-186-4
di Pierro, F.: Many-objective evolutionary algorithms and applications to water resources engineering. Ph.D. thesis, School of Engineering, Computer Science and Mathematics, UK, August 2006
DĆaz-ManrĆquez, A., Toscano-Pulido, G., Landa-Becerra, R.: A hybrid local search operator for multiobjective optimization. In: 2013 IEEE Congress on Evolutionary Computation (CEC 2013), CancĆŗn, MĆ©xico, 20ā23 June 2013, pp. 173ā180. IEEE Press (2013). ISBN 978-1-4799-0454-9
Ducheyne, E., De Baets, B., De Wulf, R.: Is fitness inheritance useful for real-world applications? In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 31ā42. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_3
Emmerich, M., Giotis, A., Ćzdemir, M., BƤck, T., Giannakoglou, K.: Metamodelāassisted evolution strategies. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., FernĆ”ndez-VillacaƱas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 361ā370. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45712-7_35
Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., HernĆ”ndez Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62ā76. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_5
Farina, M.: A neural network based generalized response surface multiobjective evolutionary algorithm. In: Congress on Evolutionary Computation (CEC 2002), Piscataway, New Jersey, vol. 1, pp. 956ā961. IEEE Service Center, May 2002
Farina, M., Deb, K., Amato, P.: dynamic multiobjective optimization problems: test cases, approximations, and applications. IEEE Trans. Evol. Comput. 8(5), 425ā442 (2004)
Fleischer, M.: The measure of pareto optima applications to multi-objective metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519ā533. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_37
Garza-Fabre, M., Pulido, G.T., Coello, C.A.C.: Ranking methods for many-objective optimization. In: Aguirre, A.H., Borja, R.M., GarciĆ”, C.A.R. (eds.) MICAI 2009. LNCS (LNAI), vol. 5845, pp. 633ā645. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05258-3_56
Goel, T., Vaidyanathan, R., Haftka, R., Shyy, W., Queipo, N., Tucker, K.: Response surface approximation of pareto optimal front in multiobjective optimization. Technical report 2004ā4501, AIAA (2004)
Goh, C.K., Ong, Y.S., Tan, K.C. (eds.): Multi-Objective Memetic Algorithms. Springer, Berlin (2009). ISBN 978-3-540-88050-9
Goldberg, D.E.: Genetic Algorithms in Search. Optimization and Machine Learning. Addison-Wesley Publishing Company, Reading (1989)
Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms, Massachusetts, USA, pp. 41ā49. Lawrence Erlbaum, July 1987. ISBN 0-8058-0158-8
GonƧalves, R.A., Kuk, J.N., Almeida, C.P., Venske, S.M.: MOEA/D-HH: a hyper-heuristic for multi-objective problems. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 94ā108. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15934-8_7
Phan, D.H., Suzuki, J.: R2-IBEA: R2 indicator based evolutionary algorithm for multiobjective optimization. In: 2013 IEEE Congress on Evolutionary Computation (CEC 2013), CancĆŗn, MĆ©xico, 20ā23 June 2013, pp. 1836ā1845. IEEE Press (2013). ISBN 978-1-4799-0454-9
Hadka, D., Reed, P.: Borg: an auto-adaptive many-objective evolutionary computing framework. Evol. Comput. 21(2), 231ā259 (2013). Summer
Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design. Struct. Optim. 4, 99ā107 (1992)
Helbig, M., Engelbrecht, A.P.: Dynamic multi-objective optimization using PSO. In: Alba, E., Nakib, A., Siarry, P. (eds.) Metaheuristics for Dynamic Optimization, chap. 8, pp. 147ā188. Springer, Berlin (2013). ISBN 978-3-642-30664-8
Helbig, M., Engelbrecht, A.P.: Performance measures for dynamic multi-objective optimisation algorithms. Inform. Sci. 250, 61ā81 (2013)
HernĆ”ndez Gómez, R., Coello Coello, C.A.: MOMBI: a new metaheuristic for many-objective optimization based on the \(R2\) indicator. In: 2013 IEEE Congress on Evolutionary Computation (CEC 2013), CancĆŗn, MĆ©xico, 20ā23 June, pp. 2488ā2495. IEEE Press (2013). ISBN 978-1-4799-0454-9
HernĆ”ndez Gómez, R., Coello Coello, C.A.: Improved metaheuristic based on the \(R2\) indicator for many-objective optimization. In: 2015 Genetic and Evolutionary Computation Conference (GECCO 2015), Madrid, Spain, July 11ā15 2015, pp. 679ā686. ACM Press (2015). ISBN 978-1-4503-3472-3
HernĆ”ndez Gómez, R., Coello Coello, C.A.: A hyper-heuristic of scalarizing functions. In: 2017 Genetic and Evolutionary Computation Conference (GECCO 2017), Berlin, Germany, 15ā19 July 2017, pp. 577ā584. ACM Press (2017). ISBN 978-1-4503-4920-8
HernĆ”ndez Gómez, R., Coello Coello, C.A., Alba Torres, E.: A multi-objective evolutionary algorithm based on parallel coordinates. In: 2016 Genetic and Evolutionary Computation Conference (GECCO 2016), Denver, Colorado, USA, 20ā24 July 2016, pp. 565ā572. ACM Press (2016). ISBN 978-1-4503-4206-3
Hong, Y.S., Lee, H.: Tahk, M.J.: Acceleration of the convergence speed of evolutionary algorithms using multi-layer neural networks. Eng. Optim. 35(1), 91ā102 (2003)
Hughes, E.J.: Evolutionary many-objective optimisation: many once or one many? In: 2005 IEEE Congress on Evolutionary Computation (CEC 2005), Edinburgh, Scotland, vol. 1, pp. 222ā227. IEEE Service Center, September 2005
Hupkens, I., Deutz, A., Yang, K., Emmerich, M.: Faster exact algorithms for computing expected hypervolume improvement. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 65ā79. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_5
Hüscken, M., Jin, Y., Sendhoff, B.: Structure optimization of neural networks for aerodynamic optimization. Soft. Comput. 9(1), 21ā28 (2005)
Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1ā28 (2007). Spring
Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 110ā125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_8
Jaszkiewicz, A., Ishibuchi, H., Zhang, Q.: Multiobjective memetic algorithms. In: Neri, F., Cotta, C., Moscato, P. (eds.) Handbook of Memetic Algorithms, chap. 13, pp. 201ā217. Springer, Berlin (2012). ISBN 978-3-642-23246-6
Jiang, S., Zhang, J., Ong, Y.S., Zhang, A.N., Tan, P.S.: A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm. IEEE Trans. Cybern. 45(10), 2202ā2213 (2015)
Jin, Y., Sendhoff, B., Kƶrner, E.: Evolutionary multi-objective optimization for simultaneous generation of signal-type and symbol-type representations. In: Coello Coello, C.A., HernĆ”ndez Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 752ā766. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_52
Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50ā66 (2006)
Knowles, J., Corne, D.: Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Trans. Evol. Comput. 7(2), 100ā116 (2003)
Knowles, J., Corne, D.: Quantifying the effects of objective space dimension in evolutionary multiobjective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 757ā771. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_57
Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the pareto archived evolution strategy. Evol. Comput. 8(2), 149ā172 (2000)
Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics Q. 2(1ā2), 83ā97 (1955). http://dx.doi.org/10.1002/nav.3800020109
Lara, A., Sanchez, G., Coello Coello, C.A., Schütze, O.: HCS: a new local search strategy for memetic multi-objective evolutionary algorithms. IEEE Trans. Evol. Comput. 14(1), 112ā132 (2010)
Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: a survey. ACM Comput. Surv. 48(1), 1ā35 (2015)
López Jaimes, A., Coello Coello, C.A., Chakraborty, D.: Objective reduction using a feature selection technique. In: 2008 Genetic and Evolutionary Computation Conference (GECCO 2008), Atlanta, USA, pp. 674ā680. ACM Press, July 2008. ISBN 978-1-60558-131-6
von Lücken, C., Baran, B., Brizuela, C.: A survey on multi-objective evolutionary algorithms for many-objective problems. Comput. Optim. Appl. 58(3), 707ā756 (2014)
Ma, X., Liu, F., Qi, Y., Wang, X., Li, L., Jiao, L., Yin, M., Gong, M.: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables. IEEE Trans. Evol. Comput. 20(2), 275ā298 (2016)
Manoatl Lopez, E., Coello Coello, C.A.: IGD\(^+\)-EMOA: A multi-objective evolutionary algorithm based on IGD\(^{+}\). In: 2016 IEEE Congress on Evolutionary Computation (CEC 2016), Vancouver, Canada, 24ā29 July 2016, pp. 999ā1006. IEEE Press (2016). ISBN 978-1-5090-0623-9
Mashwani, W.K., Salhi, A.: Multiobjective memetic algorithm based on decomposition. Appl. Soft Comput. 21, 221ā243 (2014)
McClymont, K., Keedwell, E.C.: Markov Chain hyper-Heuristic (MCHH): an online selective hyper-heuristic for multi-objective continuous problems. In: 2011 Genetic and Evolutionary Computation Conference (GECCO 2011), Dublin, Ireland, 12ā16 July 2011, pp. 2003ā2010. ACM Press (2011)
Menchaca-Mendez, A., Coello Coello, C.A.: Selection mechanisms based on the maximin fitness function to solve multi-objective optimization problems. Inform. Sci. 332, 131ā152 (2016)
Menchaca-Mendez, A., Coello Coello, C.A.: An alternative hypervolume-based selection mechanism for multi-objective evolutionary algorithms. Soft. Comput. 21(4), 861ā884 (2017)
Menchaca-Mendez, A., HernĆ”ndez, C., Coello Coello, C.A.: \(\Delta _p\)-MOEA: a new multi-objective evolutionary algorithm based on the \(\Delta _p\) indicator. In: 2016 IEEE Congress on Evolutionary Computation (CEC 2016), Vancouver, Canada, 24ā29 July 2016, pp. 3753ā3760. IEEE Press (2016). ISBN 978-1-5090-0623-9
Menchaca-Mendez, A., Montero, E., Riff, M.-C., Coello, C.A.C.: A more efficient selection scheme in iSMS-EMOA. In: Bazzan, A.L.C., Pichara, K. (eds.) IBERAMIA 2014. LNCS (LNAI), vol. 8864, pp. 371ā380. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12027-0_30
Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)
Miguel Antonio, L., Coello Coello, C.A.: Use of cooperative coevolution for solving large scale multiobjective optimization problems. In: 2013 IEEE Congress on Evolutionary Computation (CEC 2013), CancĆŗn, MĆ©xico, 20ā23 June 2013, pp. 2758ā2765. IEEE Press (2013). ISBN 978-1-4799-0454-9
Miguel Antonio, L., Coello Coello, C.A.: Indicator-based cooperative coevolution for multi-objective optimization. In: 2016 IEEE Congress on Evolutionary Computation (CEC 2016), Vancouver, Canada, 24ā29 July 2016, pp. 991ā998. IEEE Press (2016). ISBN 978-1-5090-0623-9
Mishra, B., Dehuri, S., Mall, R., Ghosh, A.: Parallel single and multiple objectives genetic algorithms: a survey. Int. J. Appl. Evol. Comput. 2(2), 21ā57 (2011)
Mostaghim, S., Schmeck, H.: Distance based ranking in many-objective particle swarm optimization. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 753ā762. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_75
Ong, Y.S., Nair, P.B., Keane, A.J., Wong, K.W.: Surrogate-assisted evolutionary optimization frameworks for high-fidelity engineering design problems. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation. STUDFUZZ, pp. 307ā332. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-44511-1_15
Pierret, S.: Turbomachinery blade design using a Navier-Stokes solver and artificial neural network. ASME J. Turbomach. 121(3), 326ā332 (1999)
Pires, E.J.S., Machado, J.A.T., de Moura Oliveira, P.B.: Entropy diversity in multi-objective particle swarm optimization. Entropy 15(12), 5475ā5491 (2013)
Praditwong, K., Yao, X.: How well do multi-objective evolutionary algorithms scale to large problems. In: 2007 IEEE Congress on Evolutionary Computation (CEC 2007), pp. 3959ā3966. IEEE Press, Singapore, September 2007
López-IbƔƱez, M., Stützle, T.: Automatic configuration of multi-objective ACO algorithms. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 95ā106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15461-4_9
Raquel, C., Yao, X.: Dynamic multi-objective optimization: a survey of the state-of-the-art. In: Yang, S., Yao, X. (eds.) Evolutionary Computation for Dynamic Optimization Problems, chap. 4, pp. 85ā106. Springer, Berlin (2013). ISBN 978-3-642-38415-8
Rasheed, K., Ni, X., Vattam, S.: Comparison of methods for developing dynamic reduced models for design optimization. Soft. Comput. 9(1), 29ā37 (2005)
Ratle, A.: Accelerating the convergence of evolutionary algorithms by fitness landscape approximation. In: Eiben, A., BƤck, T., Schoenauer, M., Schwefel, H.P. (eds.) Parallel Problem Solving from Nature, vol. V, pp. 87ā96 (1998)
Reyes Sierra, M., Coello Coello, C.A.: Fitness Inheritance in Multi-Objective Particle Swarm Optimization. In: 2005 IEEE Swarm Intelligence Symposium (SIS 2005), Pasadena, California, USA, pp. 116ā123. IEEE Press, June 2005
Reynolds, R., Liu, D.: Multi-objective cultural algorithms. In: 2011 IEEE Congress on Evolutionary Computation (CEC 2011), New Orleans, Louisiana, USA, 5ā8 June 2011, pp. 1233ā1241. IEEE Service Center (2011)
Reynolds, R.G.: An Introduction to Cultural Algorithms. In: Sebald, A.V., Fogel, L.J. (eds.) Proceedings of the Third Annual Conference on Evolutionary Programming, pp. 131ā139. World Scientific, River Edge (1994)
Reynolds, R.G., Michalewicz, Z., Cavaretta, M.: Using cultural algorithms for constraint handling in GENOCOP. In: McDonnell, J.R., Reynolds, R.G., Fogel, D.B. (eds.) Proceedings of the Fourth Annual Conference on Evolutionary Programming, pp. 298ā305. MIT Press, Cambridge (1995)
RodrĆguez Villalobos, C.A., Coello Coello, C.A.: A new multi-objective evolutionary algorithm based on a performance assessment indicator. In: 2012 Genetic and Evolutionary Computation Conference (GECCO 2012), Philadelphia, USA, pp. 505ā512. ACM Press, July 2012. ISBN: 978-1-4503-1177-9
Rudolph, G., Agapie, A.: Convergence properties of some multi-objective evolutionary algorithms. In: Proceedings of the 2000 Conference on Evolutionary Computation, Piscataway, New Jersey, vol. 2, pp. 1010ā1016. IEEE Press, July 2000
Santana-Quintero, L.V., Arias MontaƱo, A., Coello Coello, C.A.: A review of techniques for handling expensive functions in evolutionary multi-objective optimization. In: Tenne, Y., Goh, C.K. (eds.) Computational Intelligence in Expensive Optimization Problems, pp. 29ā59. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-10701-6_2
Santiago, A., Huacuja, H.J.F., Dorronsoro, B., Pecero, J.E., Santillan, C.G., Barbosa, J.J.G., Monterrubio, J.C.S.: A survey of decomposition methods for multi-objective optimization. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds.) Recent Advances on Hybrid Approaches for Designing Intelligent Systems. SCI, vol. 547, pp. 453ā465. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05170-3_31
Sato, H., Aguirre, H.E., Tanaka, K.: Controlling dominance area of solutions and its impact on the performance of MOEAs. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 5ā20. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_5
Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93ā100. Lawrence Erlbaum (1985)
Abboud, K., Schoenauer, M.: Surrogate deterministic mutation: preliminary results. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 104ā116. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46033-0_9
Schütze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 16(4), 504ā522 (2012)
Sen, P., Yang, J.B.: Multiple Criteria Decision Support in Engineering Design. Springer, London (1998)
Sharma, D., Collet, P.: Implementation techniques for massively parallel multi-objective optimization. In: Tsutsui, S., Collet, P. (eds.) Massively Parallel Evolutionary Computation on GPGPUs. NCS, pp. 267ā286. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37959-8_13
Smith, R.E., Dike, B.A., Stegmann, S.A.: Fitness inheritance in genetic algorithms. In: SAC 1995: Proceedings of the 1995 ACM Symposium on Applied Computing, pp. 345ā350. ACM Press, New York (1995)
Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221ā248 (1994). Fall
Sülflow, A., Drechsler, N., Drechsler, R.: Robust multi-objective optimization in high dimensional spaces. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 715ā726. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_54
Talbi, E.-G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., Coello Coello, C.A.: Parallel approaches for multiobjective optimization. In: Branke, J., Deb, K., Miettinen, K., SÅowiÅski, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 349ā372. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88908-3_13
Toscano Pulido, G., Coello Coello, C.A.: The micro genetic algorithm 2: towards online adaptation in evolutionary multiobjective optimization. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 252ā266. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_18
TuÅ”ar, T., FilipiÄ, B.: Visualization of pareto front approximations in evolutionary multiobjective optimization: a critical review and the prosection method. IEEE Trans. Evol. Comput. 19(2), 225ā245 (2015)
Ulmer, H., Streichert, F., Zell, A.: Model-assisted steady-state evolution strategies. In: CantĆŗ-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 610ā621. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45105-6_72
Ulmer, H., Streichert, F., Zell, A.: Evolution startegies assisted by Gaussian processes with improved pre-selection criterion. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 692ā699 (2003)
Vrugt, J.A., Robinson, B.A.: Improved evolutionary optimization from genetically adaptive multimethod search. Proc. Nat. Acad. Sci. U.S.A. 104(3), 708ā711 (2007)
Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742ā756. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_56
Wang, Y., Dang, C.: An evolutionary algorithm for dynamic multi-objective optimization. Appl. Math. Comput. 205(1), 6ā18 (2008)
Watanabe, S., Ito, M., Sakakibara, K.: A proposal on a decomposition-based evolutionary multiobjective optimization for large scale vehicle routing problems. In: 2015 IEEE Congress on Evolutionary Computation (CEC 2015), Sendai, Japan, 25ā28 May 2015, pp. 2581ā2588. IEEE Press, ISBN 978-1-4799-7492-4
While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes. IEEE Trans. Evol. Comput. 16(1), 86ā95 (2012)
While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 10(1), 29ā38 (2006)
Won, K.S., Ray, T.: Performance of kriging and cokriging based surrogate models within the unified framework for surrogate assisted optimization. In: 2004 Congress on Evolutionary Computation (CEC 2004), Portland, Oregon, USA, vol. 2, pp. 1577ā1585. IEEE Service Center, June 2004
Zapotecas MartĆnez, S., Arias MontaƱo, A., Coello Coello, C.A.: A nonlinear simplex search approach for multi-objective optimization. In: 2011 IEEE Congress on Evolutionary Computation (CEC 2011), New Orleans, Louisiana, USA, 5ā8 June 2011, pp. 2367ā2374. IEEE Service Center (2011)
Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712ā731 (2007)
Zille, H., Ishibuchi, H., Mostaghim, S., Nojima, Y.: Mutation operators based on variable grouping for multi-objective large-scale optimization. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI 2016), Athens, Greece, 6ā9 December 2016. IEEE Press (2016). ISBN 978-1-5090-4240-1
Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832ā842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84
Zitzler, E., Laumanns, M., Bleuler, S.: A tutorial on evolutionary multiobjective optimization. In: Gandibleux, X., Sevaux, M., Sƶrensen, K., Tākindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 3ā37. Springer, Berlin (2004). https://doi.org/10.1007/978-3-642-17144-4_1
Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms-a comparative study. In: Eiben, A.E. (ed.) Parallel Problem Solving from Nature V, pp. 292ā301. Springer, Amsterdam (1998)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257ā271 (1999)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117ā132 (2003)
Acknowledgements
The author gratefully acknowledges support from CONACyT grant no. 221551.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2017 Springer International Publishing AG
About this paper
Cite this paper
Coello Coello, C.A. (2017). Recent Results and Open Problems in Evolutionary Multiobjective Optimization. In: MartĆn-Vide, C., Neruda, R., Vega-RodrĆguez, M. (eds) Theory and Practice of Natural Computing. TPNC 2017. Lecture Notes in Computer Science(), vol 10687. Springer, Cham. https://doi.org/10.1007/978-3-319-71069-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-71069-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-71068-6
Online ISBN: 978-3-319-71069-3
eBook Packages: Computer ScienceComputer Science (R0)