Skip to main content

Recent Results and Open Problems in Evolutionary Multiobjective Optimization

  • Conference paper
  • First Online:
Theory and Practice of Natural Computing (TPNC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10687))

Included in the following conference series:

Abstract

Evolutionary algorithms (as well as a number of other metaheuristics) have become a popular choice for solving problems having two or more (often conflicting) objectives (the so-called multi-objective optimization problems). This area, known as EMOO (Evolutionary Multi-Objective Optimization) has had an important growth in the last 20 years, and several people (particularly newcomers) get the impression that it is now very difficult to make contributions of sufficient value to justify, for example, a PhD thesis. However, a lot of interesting research is still under way. In this paper, we will briefly review some of the research topics on evolutionary multi-objective optimization that are currently attracting a lot of interest (e.g., indicator-based selection, many-objective optimization and use of surrogates) and which represent good opportunities for doing research. Some of the challenges currently faced by this discipline will also be delineated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A metaheuristic is a high level strategy for exploring search spaces by using different methods [14]. Metaheuristics have both a diversification (i.e., exploration of the search space) and an intensification (i.e., exploitation of the accumulated search experience) procedure.

  2. 2.

    The author maintains the EMOO repository, which currently contains over 10,850 bibliographic references related to evolutionary multi-objective optimization. The EMOO repository is located at: https://emoo.cs.cinvestav.mx.

  3. 3.

    Without loss of generality, we will assume only minimization problems.

  4. 4.

    In fact, the earliest use of the hypervolume into a MOEA is as a density estimator in a secondary population (see [65]).

  5. 5.

    See also:

    http://ls11-www.cs.uni-dortmund.de/rudolph/hypervolume/start

    http://people.mpi-inf.mpg.de/~tfried/HYP/

    http://iridia.ulb.ac.be/~manuel/hypervolume.

References

  1. Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and new trends. Int. Trans. Oper. Res. 20(1), 1–48 (2013)

    Article  MATH  Google Scholar 

  2. Andersson, M., Bandaru, S., Ng, A.H.: Tuning of multiple parameter sets in evolutionary algorithms. In: 2016 Genetic and Evolutionary Computation Conference (GECCO 2016), Denver, Colorado, USA, 20–24 July 2016, pp. 533–540. ACM Press (2016). ISBN 978-1-4503-4206-3

    Google Scholar 

  3. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011). Spring

    Google Scholar 

  4. Bechikh, S., Elarbi, M., Ben Said, L.: Many-objective optimization using evolutionary algorithms: a survey. In: Bechikh, S., Datta, R., Gupta, A. (eds.) Recent Advances in Evolutionary Multi-objective Optimization. ALO, vol. 20, pp. 105–137. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42978-6_4

    Google Scholar 

  5. Bentley, J., Kung, H., Schkolnick, M., Thompson, C.: On the average number of maxima in a set of vectors and applications. J. Assoc. Comput. Mach. 25(4), 536–543 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bentley, P.J., Wakefield, J.P.: Finding acceptable solutions in the pareto-optimal range using multiobjective genetic algorithms. In: Chawdhry, P.K., Roy, R., Pant, R.K. (eds.) Soft Computing in Engineering Design and Manufacturing, Part 5, pp. 231–240. Springer, London (1997). https://doi.org/10.1007/978-1-4471-0427-8_25. Presented at the 2nd On-line World Conference on Soft Computing in Design and Manufacturing (WSC2)

  7. Molinet Berenguer, J.A., Coello Coello, C.A.: Evolutionary many-objective optimization based on kuhn-munkres’ algorithm. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 3–17. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_1

    Google Scholar 

  8. de Oliveira, F.B., Davendra, D., GuimarĆ£es, F.G.: Multi-objective differential evolution on the GPU with C-CUDA. In: SnÔŔel, V., Abraham, A., Corchado, E.S. (eds.) SOCO 2012. AISC, vol. 188, pp. 123–132. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32922-7_13

    Google Scholar 

  9. Best, C.: Multi-Objective Cultural Algorithms. Master’s thesis, Wayne State University, Detroit, Michigan, USA (2009)

    Google Scholar 

  10. Best, C., Che, X., Reynolds, R.G., Liu, D.: Multi-objective cultural algorithms. In: 2010 IEEE Congress on Evolutionary Computation (CEC 2010), Barcelona, Spain, 18–23 July 2010, pp. 3330–3338. IEEE Press (2010)

    Google Scholar 

  11. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Europ. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  12. Beume, N., Naujoks, B., Preuss, M., Rudolph, G., Wagner, T.: Effects of 1-Greedy \(\cal{S}\)-metric-selection on innumerably large pareto fronts. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 21–35. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01020-0_7

    Chapter  Google Scholar 

  13. Bhattacharya, M., Lu, G.: A dynamic approximate fitness based hybrid ea for optimization problems. In: Proceedings of IEEE Congress on Evolutionary Computation. pp. 1879–1886 (2003)

    Google Scholar 

  14. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

    Article  Google Scholar 

  15. Bringmann, K., Friedrich, T.: The maximum hypervolume set yields near-optimal approximation. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (GECCO 2010), Portland, Oregon, USA, 7–11 July 2010, pp. 511–518. ACM Press (2010). ISBN 978-1-4503-0072-8

    Google Scholar 

  16. Brockhoff, D.: A bug in the multiobjective optimizer IBEA: salutary lessons for code release and a performance re-assessment. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 187–201. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15934-8_13

    Google Scholar 

  17. Brockhoff, D., Wagner, T., Trautmann, H.: On the properties of the \(R2\) indicator. In: 2012 Genetic and Evolutionary Computation Conference (GECCO 2012), Philadelphia, USA, pp. 465–472. ACM Press, July 2012. ISBN: 978-1-4503-1177-9

    Google Scholar 

  18. Brockhoff, D., Zitzler, E.: Are all objectives necessary? on dimensionality reduction in evolutionary multiobjective optimization. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 533–542. Springer, Heidelberg (2006). https://doi.org/10.1007/11844297_54

    Chapter  Google Scholar 

  19. Büche, D., Milano, M., Koumoutsakos, P.: Self-organizing maps for multi-objective optimization. In: Barry, A.M. (ed.) GECCO 2002: Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference, pp. 152–155. AAAI, New York (2002)

    Google Scholar 

  20. Bueche, D., Schraudolph, N., Koumoutsakos, P.: Accelerating evolutionary algorithms with gaussian process fitness function models. IEEE Trans. Syst. Man Cybern. Part C 35(2), 183–194 (2005)

    Article  Google Scholar 

  21. Bui, L.T., Nguyen, M.H., Branke, J., Abbass, H.A.: Tackling dynamic problems with multiobjective evolutionary algorithms. In: Knowles, J., Corne, D., Deb, K. (eds.) Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 77–91. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-72964-8_4

  22. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ɩzcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)

    Article  Google Scholar 

  23. Chen, J.H., Goldberg, D.E., Ho, S.Y., Sastry, K.: Fitness inheritance in multi-objective optimization. In: Langdon, W., CantĆŗ-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M., Schultz, A., Miller, J., Burke, E., Jonoska, N. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002), San Francisco, California, pp. 319–326. Morgan Kaufmann Publishers, July 2002

    Google Scholar 

  24. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007). ISBN 978-0-387-33254-3

    MATH  Google Scholar 

  25. Coello Coello, C.A., Landa Becerra, R.: Evolutionary multiobjective optimization using a cultural algorithm. In: 2003 IEEE Swarm Intelligence Symposium Proceedings, Indianapolis, Indiana, USA, pp. 6–13. IEEE Service Center, April 2003

    Google Scholar 

  26. Corne, D., Knowles, J.: Techniques for highly multiobjective optimisation: some nondominated points are better than others. In: Thierens, D. (ed.) 2007 Genetic and Evolutionary Computation Conference (GECCO 2007), vol. 1, pp. 773–780. ACM Press, London (2007)

    Google Scholar 

  27. Cruz, C., Gonzalez, J.R., Pelta, D.A.: Optimization in dynamic environments: a survey on problems, methods and measures. Soft. Comput. 15(7), 1427–1448 (2011)

    Article  Google Scholar 

  28. Cserti, P., Szondi, S., GaĆ”l, B., Kozmann, G., VassĆ”nyi, I.: GPU based parallel genetic algorithm library. In: Filipič, B., Å ilc, J. (eds.) Bioinspired Optimization Methods and Their Applications, Proceedings of the Fifth International Conference on Bioinspired Optimization Methods and their Applications, BIOMA 2012, Bohinj, Slovenia, 24–25 May 2012, pp. 231–244. Jožef Stefan Institute (2012). ISBN 978-961-264-043-9

    Google Scholar 

  29. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  30. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  31. Deb, K., Sinha, A., Kukkonen, S.: Multi-objective test problems, linkages, and evolutionary methodologies. In: Keijzer, M. et al. (eds.) 2006 Genetic and Evolutionary Computation Conference (GECCO 2006), Seattle, Washington, USA, vol. 2, pp. 1141–1148. ACM Press, July 2006. ISBN 1-59593-186-4

    Google Scholar 

  32. di Pierro, F.: Many-objective evolutionary algorithms and applications to water resources engineering. Ph.D. thesis, School of Engineering, Computer Science and Mathematics, UK, August 2006

    Google Scholar 

  33. DĆ­az-ManrĆ­quez, A., Toscano-Pulido, G., Landa-Becerra, R.: A hybrid local search operator for multiobjective optimization. In: 2013 IEEE Congress on Evolutionary Computation (CEC 2013), CancĆŗn, MĆ©xico, 20–23 June 2013, pp. 173–180. IEEE Press (2013). ISBN 978-1-4799-0454-9

    Google Scholar 

  34. Ducheyne, E., De Baets, B., De Wulf, R.: Is fitness inheritance useful for real-world applications? In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 31–42. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_3

    Chapter  Google Scholar 

  35. Emmerich, M., Giotis, A., Ɩzdemir, M., BƤck, T., Giannakoglou, K.: Metamodel—assisted evolution strategies. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., FernĆ”ndez-VillacaƱas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 361–370. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45712-7_35

    Google Scholar 

  36. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., HernĆ”ndez Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_5

    Chapter  Google Scholar 

  37. Farina, M.: A neural network based generalized response surface multiobjective evolutionary algorithm. In: Congress on Evolutionary Computation (CEC 2002), Piscataway, New Jersey, vol. 1, pp. 956–961. IEEE Service Center, May 2002

    Google Scholar 

  38. Farina, M., Deb, K., Amato, P.: dynamic multiobjective optimization problems: test cases, approximations, and applications. IEEE Trans. Evol. Comput. 8(5), 425–442 (2004)

    Article  MATH  Google Scholar 

  39. Fleischer, M.: The measure of pareto optima applications to multi-objective metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_37

    Chapter  Google Scholar 

  40. Garza-Fabre, M., Pulido, G.T., Coello, C.A.C.: Ranking methods for many-objective optimization. In: Aguirre, A.H., Borja, R.M., GarciĆ”, C.A.R. (eds.) MICAI 2009. LNCS (LNAI), vol. 5845, pp. 633–645. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05258-3_56

    Chapter  Google Scholar 

  41. Goel, T., Vaidyanathan, R., Haftka, R., Shyy, W., Queipo, N., Tucker, K.: Response surface approximation of pareto optimal front in multiobjective optimization. Technical report 2004–4501, AIAA (2004)

    Google Scholar 

  42. Goh, C.K., Ong, Y.S., Tan, K.C. (eds.): Multi-Objective Memetic Algorithms. Springer, Berlin (2009). ISBN 978-3-540-88050-9

    MATH  Google Scholar 

  43. Goldberg, D.E.: Genetic Algorithms in Search. Optimization and Machine Learning. Addison-Wesley Publishing Company, Reading (1989)

    Google Scholar 

  44. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms, Massachusetts, USA, pp. 41–49. Lawrence Erlbaum, July 1987. ISBN 0-8058-0158-8

    Google Scholar 

  45. GonƧalves, R.A., Kuk, J.N., Almeida, C.P., Venske, S.M.: MOEA/D-HH: a hyper-heuristic for multi-objective problems. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 94–108. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15934-8_7

    Google Scholar 

  46. Phan, D.H., Suzuki, J.: R2-IBEA: R2 indicator based evolutionary algorithm for multiobjective optimization. In: 2013 IEEE Congress on Evolutionary Computation (CEC 2013), CancĆŗn, MĆ©xico, 20–23 June 2013, pp. 1836–1845. IEEE Press (2013). ISBN 978-1-4799-0454-9

    Google Scholar 

  47. Hadka, D., Reed, P.: Borg: an auto-adaptive many-objective evolutionary computing framework. Evol. Comput. 21(2), 231–259 (2013). Summer

    Google Scholar 

  48. Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design. Struct. Optim. 4, 99–107 (1992)

    Article  Google Scholar 

  49. Helbig, M., Engelbrecht, A.P.: Dynamic multi-objective optimization using PSO. In: Alba, E., Nakib, A., Siarry, P. (eds.) Metaheuristics for Dynamic Optimization, chap. 8, pp. 147–188. Springer, Berlin (2013). ISBN 978-3-642-30664-8

    Google Scholar 

  50. Helbig, M., Engelbrecht, A.P.: Performance measures for dynamic multi-objective optimisation algorithms. Inform. Sci. 250, 61–81 (2013)

    Article  MATH  Google Scholar 

  51. HernĆ”ndez Gómez, R., Coello Coello, C.A.: MOMBI: a new metaheuristic for many-objective optimization based on the \(R2\) indicator. In: 2013 IEEE Congress on Evolutionary Computation (CEC 2013), CancĆŗn, MĆ©xico, 20–23 June, pp. 2488–2495. IEEE Press (2013). ISBN 978-1-4799-0454-9

    Google Scholar 

  52. HernĆ”ndez Gómez, R., Coello Coello, C.A.: Improved metaheuristic based on the \(R2\) indicator for many-objective optimization. In: 2015 Genetic and Evolutionary Computation Conference (GECCO 2015), Madrid, Spain, July 11–15 2015, pp. 679–686. ACM Press (2015). ISBN 978-1-4503-3472-3

    Google Scholar 

  53. HernĆ”ndez Gómez, R., Coello Coello, C.A.: A hyper-heuristic of scalarizing functions. In: 2017 Genetic and Evolutionary Computation Conference (GECCO 2017), Berlin, Germany, 15–19 July 2017, pp. 577–584. ACM Press (2017). ISBN 978-1-4503-4920-8

    Google Scholar 

  54. HernĆ”ndez Gómez, R., Coello Coello, C.A., Alba Torres, E.: A multi-objective evolutionary algorithm based on parallel coordinates. In: 2016 Genetic and Evolutionary Computation Conference (GECCO 2016), Denver, Colorado, USA, 20–24 July 2016, pp. 565–572. ACM Press (2016). ISBN 978-1-4503-4206-3

    Google Scholar 

  55. Hong, Y.S., Lee, H.: Tahk, M.J.: Acceleration of the convergence speed of evolutionary algorithms using multi-layer neural networks. Eng. Optim. 35(1), 91–102 (2003)

    Article  MathSciNet  Google Scholar 

  56. Hughes, E.J.: Evolutionary many-objective optimisation: many once or one many? In: 2005 IEEE Congress on Evolutionary Computation (CEC 2005), Edinburgh, Scotland, vol. 1, pp. 222–227. IEEE Service Center, September 2005

    Google Scholar 

  57. Hupkens, I., Deutz, A., Yang, K., Emmerich, M.: Faster exact algorithms for computing expected hypervolume improvement. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 65–79. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_5

    Google Scholar 

  58. Hüscken, M., Jin, Y., Sendhoff, B.: Structure optimization of neural networks for aerodynamic optimization. Soft. Comput. 9(1), 21–28 (2005)

    Article  Google Scholar 

  59. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1–28 (2007). Spring

    Article  Google Scholar 

  60. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_8

    Google Scholar 

  61. Jaszkiewicz, A., Ishibuchi, H., Zhang, Q.: Multiobjective memetic algorithms. In: Neri, F., Cotta, C., Moscato, P. (eds.) Handbook of Memetic Algorithms, chap. 13, pp. 201–217. Springer, Berlin (2012). ISBN 978-3-642-23246-6

    Google Scholar 

  62. Jiang, S., Zhang, J., Ong, Y.S., Zhang, A.N., Tan, P.S.: A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm. IEEE Trans. Cybern. 45(10), 2202–2213 (2015)

    Article  Google Scholar 

  63. Jin, Y., Sendhoff, B., Kƶrner, E.: Evolutionary multi-objective optimization for simultaneous generation of signal-type and symbol-type representations. In: Coello Coello, C.A., HernĆ”ndez Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 752–766. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_52

    Chapter  Google Scholar 

  64. Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006)

    Article  Google Scholar 

  65. Knowles, J., Corne, D.: Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Trans. Evol. Comput. 7(2), 100–116 (2003)

    Article  Google Scholar 

  66. Knowles, J., Corne, D.: Quantifying the effects of objective space dimension in evolutionary multiobjective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 757–771. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_57

    Chapter  Google Scholar 

  67. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

    Article  Google Scholar 

  68. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics Q. 2(1–2), 83–97 (1955). http://dx.doi.org/10.1002/nav.3800020109

  69. Lara, A., Sanchez, G., Coello Coello, C.A., Schütze, O.: HCS: a new local search strategy for memetic multi-objective evolutionary algorithms. IEEE Trans. Evol. Comput. 14(1), 112–132 (2010)

    Article  Google Scholar 

  70. Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: a survey. ACM Comput. Surv. 48(1), 1–35 (2015)

    Article  Google Scholar 

  71. López Jaimes, A., Coello Coello, C.A., Chakraborty, D.: Objective reduction using a feature selection technique. In: 2008 Genetic and Evolutionary Computation Conference (GECCO 2008), Atlanta, USA, pp. 674–680. ACM Press, July 2008. ISBN 978-1-60558-131-6

    Google Scholar 

  72. von Lücken, C., Baran, B., Brizuela, C.: A survey on multi-objective evolutionary algorithms for many-objective problems. Comput. Optim. Appl. 58(3), 707–756 (2014)

    MathSciNet  MATH  Google Scholar 

  73. Ma, X., Liu, F., Qi, Y., Wang, X., Li, L., Jiao, L., Yin, M., Gong, M.: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables. IEEE Trans. Evol. Comput. 20(2), 275–298 (2016)

    Article  Google Scholar 

  74. Manoatl Lopez, E., Coello Coello, C.A.: IGD\(^+\)-EMOA: A multi-objective evolutionary algorithm based on IGD\(^{+}\). In: 2016 IEEE Congress on Evolutionary Computation (CEC 2016), Vancouver, Canada, 24–29 July 2016, pp. 999–1006. IEEE Press (2016). ISBN 978-1-5090-0623-9

    Google Scholar 

  75. Mashwani, W.K., Salhi, A.: Multiobjective memetic algorithm based on decomposition. Appl. Soft Comput. 21, 221–243 (2014)

    Article  Google Scholar 

  76. McClymont, K., Keedwell, E.C.: Markov Chain hyper-Heuristic (MCHH): an online selective hyper-heuristic for multi-objective continuous problems. In: 2011 Genetic and Evolutionary Computation Conference (GECCO 2011), Dublin, Ireland, 12–16 July 2011, pp. 2003–2010. ACM Press (2011)

    Google Scholar 

  77. Menchaca-Mendez, A., Coello Coello, C.A.: Selection mechanisms based on the maximin fitness function to solve multi-objective optimization problems. Inform. Sci. 332, 131–152 (2016)

    Article  Google Scholar 

  78. Menchaca-Mendez, A., Coello Coello, C.A.: An alternative hypervolume-based selection mechanism for multi-objective evolutionary algorithms. Soft. Comput. 21(4), 861–884 (2017)

    Article  Google Scholar 

  79. Menchaca-Mendez, A., HernĆ”ndez, C., Coello Coello, C.A.: \(\Delta _p\)-MOEA: a new multi-objective evolutionary algorithm based on the \(\Delta _p\) indicator. In: 2016 IEEE Congress on Evolutionary Computation (CEC 2016), Vancouver, Canada, 24–29 July 2016, pp. 3753–3760. IEEE Press (2016). ISBN 978-1-5090-0623-9

    Google Scholar 

  80. Menchaca-Mendez, A., Montero, E., Riff, M.-C., Coello, C.A.C.: A more efficient selection scheme in iSMS-EMOA. In: Bazzan, A.L.C., Pichara, K. (eds.) IBERAMIA 2014. LNCS (LNAI), vol. 8864, pp. 371–380. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12027-0_30

    Google Scholar 

  81. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  82. Miguel Antonio, L., Coello Coello, C.A.: Use of cooperative coevolution for solving large scale multiobjective optimization problems. In: 2013 IEEE Congress on Evolutionary Computation (CEC 2013), CancĆŗn, MĆ©xico, 20–23 June 2013, pp. 2758–2765. IEEE Press (2013). ISBN 978-1-4799-0454-9

    Google Scholar 

  83. Miguel Antonio, L., Coello Coello, C.A.: Indicator-based cooperative coevolution for multi-objective optimization. In: 2016 IEEE Congress on Evolutionary Computation (CEC 2016), Vancouver, Canada, 24–29 July 2016, pp. 991–998. IEEE Press (2016). ISBN 978-1-5090-0623-9

    Google Scholar 

  84. Mishra, B., Dehuri, S., Mall, R., Ghosh, A.: Parallel single and multiple objectives genetic algorithms: a survey. Int. J. Appl. Evol. Comput. 2(2), 21–57 (2011)

    Article  Google Scholar 

  85. Mostaghim, S., Schmeck, H.: Distance based ranking in many-objective particle swarm optimization. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 753–762. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_75

    Chapter  Google Scholar 

  86. Ong, Y.S., Nair, P.B., Keane, A.J., Wong, K.W.: Surrogate-assisted evolutionary optimization frameworks for high-fidelity engineering design problems. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation. STUDFUZZ, pp. 307–332. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-44511-1_15

    Google Scholar 

  87. Pierret, S.: Turbomachinery blade design using a Navier-Stokes solver and artificial neural network. ASME J. Turbomach. 121(3), 326–332 (1999)

    Article  Google Scholar 

  88. Pires, E.J.S., Machado, J.A.T., de Moura Oliveira, P.B.: Entropy diversity in multi-objective particle swarm optimization. Entropy 15(12), 5475–5491 (2013)

    Article  MATH  Google Scholar 

  89. Praditwong, K., Yao, X.: How well do multi-objective evolutionary algorithms scale to large problems. In: 2007 IEEE Congress on Evolutionary Computation (CEC 2007), pp. 3959–3966. IEEE Press, Singapore, September 2007

    Google Scholar 

  90. López-IbƔƱez, M., Stützle, T.: Automatic configuration of multi-objective ACO algorithms. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 95–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15461-4_9

    Chapter  Google Scholar 

  91. Raquel, C., Yao, X.: Dynamic multi-objective optimization: a survey of the state-of-the-art. In: Yang, S., Yao, X. (eds.) Evolutionary Computation for Dynamic Optimization Problems, chap. 4, pp. 85–106. Springer, Berlin (2013). ISBN 978-3-642-38415-8

    Google Scholar 

  92. Rasheed, K., Ni, X., Vattam, S.: Comparison of methods for developing dynamic reduced models for design optimization. Soft. Comput. 9(1), 29–37 (2005)

    Article  Google Scholar 

  93. Ratle, A.: Accelerating the convergence of evolutionary algorithms by fitness landscape approximation. In: Eiben, A., BƤck, T., Schoenauer, M., Schwefel, H.P. (eds.) Parallel Problem Solving from Nature, vol. V, pp. 87–96 (1998)

    Google Scholar 

  94. Reyes Sierra, M., Coello Coello, C.A.: Fitness Inheritance in Multi-Objective Particle Swarm Optimization. In: 2005 IEEE Swarm Intelligence Symposium (SIS 2005), Pasadena, California, USA, pp. 116–123. IEEE Press, June 2005

    Google Scholar 

  95. Reynolds, R., Liu, D.: Multi-objective cultural algorithms. In: 2011 IEEE Congress on Evolutionary Computation (CEC 2011), New Orleans, Louisiana, USA, 5–8 June 2011, pp. 1233–1241. IEEE Service Center (2011)

    Google Scholar 

  96. Reynolds, R.G.: An Introduction to Cultural Algorithms. In: Sebald, A.V., Fogel, L.J. (eds.) Proceedings of the Third Annual Conference on Evolutionary Programming, pp. 131–139. World Scientific, River Edge (1994)

    Google Scholar 

  97. Reynolds, R.G., Michalewicz, Z., Cavaretta, M.: Using cultural algorithms for constraint handling in GENOCOP. In: McDonnell, J.R., Reynolds, R.G., Fogel, D.B. (eds.) Proceedings of the Fourth Annual Conference on Evolutionary Programming, pp. 298–305. MIT Press, Cambridge (1995)

    Google Scholar 

  98. RodrĆ­guez Villalobos, C.A., Coello Coello, C.A.: A new multi-objective evolutionary algorithm based on a performance assessment indicator. In: 2012 Genetic and Evolutionary Computation Conference (GECCO 2012), Philadelphia, USA, pp. 505–512. ACM Press, July 2012. ISBN: 978-1-4503-1177-9

    Google Scholar 

  99. Rudolph, G., Agapie, A.: Convergence properties of some multi-objective evolutionary algorithms. In: Proceedings of the 2000 Conference on Evolutionary Computation, Piscataway, New Jersey, vol. 2, pp. 1010–1016. IEEE Press, July 2000

    Google Scholar 

  100. Santana-Quintero, L.V., Arias MontaƱo, A., Coello Coello, C.A.: A review of techniques for handling expensive functions in evolutionary multi-objective optimization. In: Tenne, Y., Goh, C.K. (eds.) Computational Intelligence in Expensive Optimization Problems, pp. 29–59. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-10701-6_2

    Chapter  Google Scholar 

  101. Santiago, A., Huacuja, H.J.F., Dorronsoro, B., Pecero, J.E., Santillan, C.G., Barbosa, J.J.G., Monterrubio, J.C.S.: A survey of decomposition methods for multi-objective optimization. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds.) Recent Advances on Hybrid Approaches for Designing Intelligent Systems. SCI, vol. 547, pp. 453–465. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05170-3_31

    Chapter  Google Scholar 

  102. Sato, H., Aguirre, H.E., Tanaka, K.: Controlling dominance area of solutions and its impact on the performance of MOEAs. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 5–20. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_5

    Chapter  Google Scholar 

  103. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100. Lawrence Erlbaum (1985)

    Google Scholar 

  104. Abboud, K., Schoenauer, M.: Surrogate deterministic mutation: preliminary results. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 104–116. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46033-0_9

    Chapter  Google Scholar 

  105. Schütze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 16(4), 504–522 (2012)

    Article  Google Scholar 

  106. Sen, P., Yang, J.B.: Multiple Criteria Decision Support in Engineering Design. Springer, London (1998)

    Book  Google Scholar 

  107. Sharma, D., Collet, P.: Implementation techniques for massively parallel multi-objective optimization. In: Tsutsui, S., Collet, P. (eds.) Massively Parallel Evolutionary Computation on GPGPUs. NCS, pp. 267–286. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37959-8_13

    Chapter  Google Scholar 

  108. Smith, R.E., Dike, B.A., Stegmann, S.A.: Fitness inheritance in genetic algorithms. In: SAC 1995: Proceedings of the 1995 ACM Symposium on Applied Computing, pp. 345–350. ACM Press, New York (1995)

    Google Scholar 

  109. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994). Fall

    Google Scholar 

  110. Sülflow, A., Drechsler, N., Drechsler, R.: Robust multi-objective optimization in high dimensional spaces. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 715–726. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_54

    Chapter  Google Scholar 

  111. Talbi, E.-G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., Coello Coello, C.A.: Parallel approaches for multiobjective optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 349–372. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88908-3_13

    Chapter  Google Scholar 

  112. Toscano Pulido, G., Coello Coello, C.A.: The micro genetic algorithm 2: towards online adaptation in evolutionary multiobjective optimization. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 252–266. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_18

    Chapter  Google Scholar 

  113. TuÅ”ar, T., Filipič, B.: Visualization of pareto front approximations in evolutionary multiobjective optimization: a critical review and the prosection method. IEEE Trans. Evol. Comput. 19(2), 225–245 (2015)

    Article  Google Scholar 

  114. Ulmer, H., Streichert, F., Zell, A.: Model-assisted steady-state evolution strategies. In: CantĆŗ-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 610–621. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45105-6_72

    Chapter  Google Scholar 

  115. Ulmer, H., Streichert, F., Zell, A.: Evolution startegies assisted by Gaussian processes with improved pre-selection criterion. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 692–699 (2003)

    Google Scholar 

  116. Vrugt, J.A., Robinson, B.A.: Improved evolutionary optimization from genetically adaptive multimethod search. Proc. Nat. Acad. Sci. U.S.A. 104(3), 708–711 (2007)

    Article  Google Scholar 

  117. Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_56

    Chapter  Google Scholar 

  118. Wang, Y., Dang, C.: An evolutionary algorithm for dynamic multi-objective optimization. Appl. Math. Comput. 205(1), 6–18 (2008)

    MathSciNet  MATH  Google Scholar 

  119. Watanabe, S., Ito, M., Sakakibara, K.: A proposal on a decomposition-based evolutionary multiobjective optimization for large scale vehicle routing problems. In: 2015 IEEE Congress on Evolutionary Computation (CEC 2015), Sendai, Japan, 25–28 May 2015, pp. 2581–2588. IEEE Press, ISBN 978-1-4799-7492-4

    Google Scholar 

  120. While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes. IEEE Trans. Evol. Comput. 16(1), 86–95 (2012)

    Article  Google Scholar 

  121. While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 10(1), 29–38 (2006)

    Article  Google Scholar 

  122. Won, K.S., Ray, T.: Performance of kriging and cokriging based surrogate models within the unified framework for surrogate assisted optimization. In: 2004 Congress on Evolutionary Computation (CEC 2004), Portland, Oregon, USA, vol. 2, pp. 1577–1585. IEEE Service Center, June 2004

    Google Scholar 

  123. Zapotecas MartĆ­nez, S., Arias MontaƱo, A., Coello Coello, C.A.: A nonlinear simplex search approach for multi-objective optimization. In: 2011 IEEE Congress on Evolutionary Computation (CEC 2011), New Orleans, Louisiana, USA, 5–8 June 2011, pp. 2367–2374. IEEE Service Center (2011)

    Google Scholar 

  124. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  125. Zille, H., Ishibuchi, H., Mostaghim, S., Nojima, Y.: Mutation operators based on variable grouping for multi-objective large-scale optimization. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI 2016), Athens, Greece, 6–9 December 2016. IEEE Press (2016). ISBN 978-1-5090-4240-1

    Google Scholar 

  126. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84

    Chapter  Google Scholar 

  127. Zitzler, E., Laumanns, M., Bleuler, S.: A tutorial on evolutionary multiobjective optimization. In: Gandibleux, X., Sevaux, M., Sƶrensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 3–37. Springer, Berlin (2004). https://doi.org/10.1007/978-3-642-17144-4_1

  128. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms-a comparative study. In: Eiben, A.E. (ed.) Parallel Problem Solving from Nature V, pp. 292–301. Springer, Amsterdam (1998)

    Google Scholar 

  129. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  130. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges support from CONACyT grant no. 221551.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Coello Coello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coello Coello, C.A. (2017). Recent Results and Open Problems in Evolutionary Multiobjective Optimization. In: MartĆ­n-Vide, C., Neruda, R., Vega-RodrĆ­guez, M. (eds) Theory and Practice of Natural Computing. TPNC 2017. Lecture Notes in Computer Science(), vol 10687. Springer, Cham. https://doi.org/10.1007/978-3-319-71069-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71069-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71068-6

  • Online ISBN: 978-3-319-71069-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics