Skip to main content

Splicing-Inspired Recognition and Composition of Musical Collectives Styles

  • Conference paper
  • First Online:
Theory and Practice of Natural Computing (TPNC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10687))

Included in the following conference series:

  • 730 Accesses

Abstract

Computer music is an emerging area for the application of computational techniques inspired by information processing in Nature. A challenging task in this area is the automatic recognition of musical styles. The style of a musician is the result of the combination of several factors such as experience, personality, preferences. In the last years, several works have been proposed for the recognition of styles for soloists performers, where the improvisation often plays an important role. The evolution of this problem, that is the recognition of multiple performers’ style that collaborate over time to perform, record or compose music, know as Musical collective, presents many more difficulties, due to the simultaneous presence of various performers, mutually conditionable.

In this paper, we propose a new approach for both recognition and automatic composition of styles for musical collectives. Specifically, our system exploits a machine learning recognizer, based on one-class support vector machines and neural networks for style recognition, and a splicing composer, for music composition (in the style of the whole collective).

To assess the effectiveness of our system we performed several tests using transcriptions of popular jazz bands. With regard to the recognition, we show that our classifier is able to achieve an accuracy of \(97.7\%\). With regard to the composition, we measured the quality of the generated compositions by collecting subjective perceptions from domain experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://goo.gl/RnVVT5.

References

  1. Acampora, G., Cadenas, J.M., Prisco, R.D., Loia, V., Ballester, E.M., Zaccagnino, R.: A hybrid computational intelligence approach for automatic music composition. In: IEEE International Conference on Fuzzy Systems, pp. 202–209 (2011)

    Google Scholar 

  2. Biles, J.A.: GenJam: a genetic algorithm for generating jazz solos. In: International Computer Music Conference, pp. 131–137 (1994)

    Google Scholar 

  3. Biles, J.A.: GenJam in perspective: a tentative taxonomy for GA music and art systems. Leonardo 36(1), 43–45 (2003)

    Article  Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, New York (2006)

    MATH  Google Scholar 

  5. Cope, D.: Experiments in Musical Intelligence. Computer Music and Digital Audio Series. A-R Editions, Middleton (1996)

    Google Scholar 

  6. De Felice, C., De Prisco, R., Malandrino, D., Zaccagnino, G., Zaccagnino, R., Zizza, R.: Chorale music splicing system: an algorithmic music composer inspired by molecular splicing. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, vol. 9027, pp. 50–61. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16498-4_5

    Google Scholar 

  7. De Felice, C., De Prisco, R., Malandrino, D., Zaccagnino, G., Zaccagnino, R., Zizza, R.: Splicing music composition. Inf. Sci. 385–386, 196–212 (2017)

    Article  MATH  Google Scholar 

  8. De Felice, C., Zaccagnino, R., Zizza, R.: Unavoidable sets and regularity of languages generated by (1, 3)-circular splicing systems. In: TPNC 2014. Proceedings, Granada, pp. 169–180, 9–11 December 2014

    Google Scholar 

  9. De Felice, C., Zaccagnino, R., Zizza, R.: Unavoidable sets and circular splicing languages. Theor. Comput. Sci. 658, 148–158 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. De Prisco, R., Zaccagnino, R.: An evolutionary music composer algorithm for bass harmonization. In: Giacobini, M., Brabazon, A., Cagnoni, S., Caro, G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 567–572. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01129-0_63

    Chapter  Google Scholar 

  11. De Prisco, R., Eletto, A., Torre, A., Zaccagnino, R.: A neural network for bass functional harmonization. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., ONeill, M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 351–360. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12242-2_36

    Chapter  Google Scholar 

  12. De Prisco, R., Malandrino, D., Zaccagnino, G., Zaccagnino, R., Zizza, R.: A Kind of bio-inspired learning of music style. In: Correia, J., Ciesielski, V., Liapis, A. (eds.) EvoMUSART 2017. LNCS, vol. 10198, pp. 97–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55750-2_7

    Chapter  Google Scholar 

  13. De Prisco, R., Zaccagnino, G., Zaccagnino, R.: Evobasscomposer: a multi-objective genetic algorithm for 4-voice compositions. In: GECCO, pp. 817–818 (2010)

    Google Scholar 

  14. De Prisco, R., Zaccagnino, G., Zaccagnino, R.: A genetic algorithm for dodecaphonic compositions. In: Chio, C., Brabazon, A., Caro, G.A., Drechsler, R., Farooq, M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011. LNCS, vol. 6625, pp. 244–253. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20520-0_25

    Chapter  Google Scholar 

  15. De Prisco, R., Zaccagnino, G., Zaccagnino, R.: A multi-objective differential evolution algorithm for 4-voice compositions. In: SDE, pp. 65–72 (2011)

    Google Scholar 

  16. Ebcioglu, K.: An expert system for harmonizing four-part chorales. In: Machine Models of Music, pp. 385–401. MIT Press, Cambridge (1992)

    Google Scholar 

  17. Gers, F.A., Schmidhuber, J.: Recurrent nets that time and count. In: International Joint Conference on Neural Networks, Como (2000)

    Google Scholar 

  18. Head, T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviours. Bull. Math. Biol. 49, 737–759 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Horner, A., Ayers, L.: Harmonization of musical progression with genetic algorithms. In: International Computer Music Conference, pp. 483–484 (1995)

    Google Scholar 

  20. Lehmann, D.: Harmonizing melodies in real-time: the connectionist approach. In: Proceedings of the International Computer Music Association, pp. 27–31 (1997)

    Google Scholar 

  21. Levine, M.: The Jazz Theory Book. Curci (2009)

    Google Scholar 

  22. Miranda, E.: Composing Music with Computers. Focal Press (2001)

    Google Scholar 

  23. Pachet, F., Westermann, G., Laigre, D.: Musical data mining for electronic music distribution. In: WEB Delivering of Music (WEDELMUSIC), pp. 101–106 (2001)

    Google Scholar 

  24. Pampalk, E., Dixon, S., Widmer, G.: Exploring music collections by browsing different views. In: Music Information Retrieval (2003)

    Google Scholar 

  25. Soltau, H., Schultz, T., Westphal, M., Waibel, A.: Recognition of music types. In: International Conference on Acoustics, Speech, and Signal Processing (1998)

    Google Scholar 

  26. Whitman, B., Flake, G., Lawrence, S.: Artist detection in music with minnowmatch. In: Neural Networks for Signal Processing XI, pp. 559–568 (2001)

    Google Scholar 

  27. Wiggins, G., Papadopoulos, G., Amnuaisuk, S., Tuson, A.: Evolutionary methods for musical composition. In: CASYS1998 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocco Zaccagnino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Prisco, R., Malandrino, D., Zaccagnino, G., Zaccagnino, R., Zizza, R. (2017). Splicing-Inspired Recognition and Composition of Musical Collectives Styles. In: MartĂ­n-Vide, C., Neruda, R., Vega-RodrĂ­guez, M. (eds) Theory and Practice of Natural Computing. TPNC 2017. Lecture Notes in Computer Science(), vol 10687. Springer, Cham. https://doi.org/10.1007/978-3-319-71069-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71069-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71068-6

  • Online ISBN: 978-3-319-71069-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics